Answer:
x = 2
Step-by-step explanation:
since both equal y, you can set them equal to each other
x + 4 = 3x + 0
subtract x on both sides
4 = 2x
divide by 2 on both sides
2 = x
♡♡ hope this helped ♡♡
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{17\frac{13}{18}}\implies \cfrac{17\cdot 18 +13}{18}\implies \stackrel{improper}{\cfrac{319}{18}}~\hfill \stackrel{mixed}{2\frac{7}{9}}\implies \cfrac{2\cdot 9+7}{9}\implies \stackrel{improper}{\cfrac{25}{9}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B17%5Cfrac%7B13%7D%7B18%7D%7D%5Cimplies%20%5Ccfrac%7B17%5Ccdot%2018%20%2B13%7D%7B18%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B319%7D%7B18%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B9%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%209%2B7%7D%7B9%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B9%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \cfrac{319}{18}\div \cfrac{25}{9}\implies \cfrac{319}{\underset{2}{~~\begin{matrix} 18 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{\stackrel{1}{~~\begin{matrix} 9 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{25}\implies \cfrac{319}{50}\implies 6\frac{19}{50}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B319%7D%7B18%7D%5Cdiv%20%5Ccfrac%7B25%7D%7B9%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%2018%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%209%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B25%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B50%7D%5Cimplies%206%5Cfrac%7B19%7D%7B50%7D)
Given: <span>f(x) = log3 (x + 1), look for f^-1 (2)
We are looking for the inverse of a function. The inverse of the function can be obtained by switching the variables and obtaining the values of the new function, before substituting f(2). Using a calculator:
</span><span>f^-1 (2) = 8</span>
Area of a triangle is calculated by using the formula A=1/2bh
A= 1/2 (8.2) (5)
A=1/2 (41)
A=20.5 or 20 1/2, whichever way you think your teacher wants it.
Answer:
- (2x + 5)/(x - 9)
- 3. quantity 2 x plus 5 over x minus 9
Step-by-step explanation:
Quantity 2 x squared plus 13 x plus 20 all over x squared minus 5 x minus 36
- (2x² + 13x + 20)/(x² -5x - 36) =
- (2x²+ 5x + 8x + 20)/(x² - 9x + 4x -36)=
- (2x + 5)(x + 4)/(x - 9)(x + 4) =
- (2x + 5)/(x - 9)
Correct option is option 3