Answer:

Step-by-step explanation:
Hi!
Since an equilateral triangle means that every side is equal, our triangle will have 12 on all sides.
To find the height of an equilateral triangle we use
.
.
So the height is
.
Now we have to solve 12 *
÷ 2.

.
Thus, the area of the triangle is
.
Hope this helps!
Answer:
Answer:
b. -75x+57=-75x+57
Step-by-step explanation:
If an equation after solving does not give the solution but give a true statement then the equation has infinitely many solution,
In option a.
57x+57=-75x-75
57x + 75x = -75 - 57
132x = -132
⇒ x = -1
i.e. it has only one solution,
In option b.
-75x+57=-75x+57
-75x + 75x = 57 - 57
0 = 0 ( True )
i.e. it has infinitely many solution.
In option c.
75x+57=-75x+57
75x + 75x = 57 - 57
150x = 0
⇒ x = 0
i.e. it has only one solution,
In option d.
-57x+57=-75x+75
-57x + 75x = 75 - 57
18x = 18
⇒ x = 1
i.e. it has only one solution.
Step-by-step explanation:
6a^3+228a^2+4a^2b+152ab-2ab-76b^2
For this case we must simplify the following expression:
![\frac {6-3 \sqrt [3] {6}} {\sqrt [3] {9}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%7D)
Multiplying the numerator and denominator by![(\sqrt [3] {9}) ^ 2](https://tex.z-dn.net/?f=%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202)
![\frac {6-3 \sqrt [3] {6}} {\sqrt [3] {9}} * \frac {(\sqrt [3] {9}) ^ 2} {(\sqrt [3] { 9}) ^ 2} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%7D%20%2A%20%5Cfrac%20%7B%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%28%5Csqrt%20%5B3%5D%20%7B%209%7D%29%20%5E%202%7D%20%3D)
We rewrite:
![\frac {\frac {6-3 \sqrt [3] {6}} * (\sqrt [3] {9}) ^ 2} {\sqrt [3] {9} * (\sqrt [3] {9 }) ^ 2} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%20%7D%29%20%5E%202%7D%20%3D)
By properties of powers we have that:
![a ^ m * a ^ n = a ^ {m + n}\\\frac {(6-3 \sqrt [3] {6}) * (\sqrt [3] {9}) ^ 2} {(\sqrt [3] {9}) ^ 3} =\\\frac {(6-3 \sqrt [3] {6}) * (\sqrt [3] {9}) ^ 2} {9} =](https://tex.z-dn.net/?f=a%20%5E%20m%20%2A%20a%20%5E%20n%20%3D%20a%20%5E%20%7Bm%20%2B%20n%7D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%203%7D%20%3D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B9%7D%20%3D)
We rewrite, moving the exponent within the radical:
![\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {9 ^ 2}} {9} =\\\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {81}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B9%20%5E%202%7D%7D%20%7B9%7D%20%3D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B81%7D%7D%20%7B9%7D%20%3D)
We can rewrite
![\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {3 * 3 ^ 3}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B3%20%2A%203%20%5E%203%7D%7D%20%7B9%7D%20%3D)
We simplify:
![\frac {(6-3 \sqrt [3] {6}) * 3 \sqrt [3] {3}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%203%20%5Csqrt%20%5B3%5D%20%7B3%7D%7D%20%7B9%7D%20%3D)
We apply distributive property:
![\frac {18 \sqrt [3] {3} -9 \sqrt [3] {18}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B18%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-9%20%5Csqrt%20%5B3%5D%20%7B18%7D%7D%20%7B9%7D%20%3D)
Simplifying we finally have:
![2 \sqrt [3] {3} - \sqrt [3] {18}](https://tex.z-dn.net/?f=2%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-%20%5Csqrt%20%5B3%5D%20%7B18%7D)
Answer:
![2 \sqrt [3] {3} - \sqrt [3] {18}](https://tex.z-dn.net/?f=2%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-%20%5Csqrt%20%5B3%5D%20%7B18%7D)