Answer:
8
Step-by-step explanation:
________________________________
<h2>Pie: </h2><h3>up = m ÷ ti</h3><h3>= $57 ÷ 8 Pies</h3><h3>= 7.125</h3><h3>= $39 ÷ 7.125</h3><h3>= ~ $5.47368</h3><h3>= $6</h3>
<h2>Juice: </h2><h3>up = m ÷ ti</h3><h3>= $57 ÷ 6 Juices</h3><h3>= 9.5</h3><h3>= $18 ÷ 9.5</h3><h3>= ~ $1.89473</h3><h3>= $1.50</h3>
<h2>The Price Of An Apple Pie Is $6 Each & The Price Of A Juice Is $1.50 Each.</h2>
________________________________
Answer:
Step-by-step explanation:
B=3x-2
C=12x+2
D=B=3x-2 (Vertically opposite angles)
A=?
Now; we know, A+B+C+D=360 deg.
=>A=360-(B+C+D)
=360-(3x-2+12x+2+3x-2)
=360-(18x-2) ----[1]
B+C=180 deg. (linear pair)
=> 3x-2+12x+2=180
=> 15x=180
=> x=180/15
=12 ---[2]
subsitute [2] in [1];
=> A= 360-(18x-2)
= 360-(18*12-2)
= 360-(116-2)
= 360-214
= 146 deg.
So, the correct answer is (D).
Hope the answer is useful.
Yes, we can obtain a diagonal matrix by multiplying two non diagonal matrix.
Consider the matrix multiplication below
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \left[\begin{array}{cc}e&f\\g&h\end{array}\right] = \left[\begin{array}{cc}a e+b g&a f+b h\\c e+d g&c f+d h\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%20e%2Bb%20g%26a%20f%2Bb%20h%5C%5Cc%20e%2Bd%20g%26c%20f%2Bd%20h%5Cend%7Barray%7D%5Cright%5D%20)
For the product to be a diagonal matrix,
a f + b h = 0 ⇒ a f = -b h
and c e + d g = 0 ⇒ c e = -d g
Consider the following sets of values

The the matrix product becomes:
![\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}\frac{1}{3}&-1\\-\frac{1}{4}&\frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{1}{3}-\frac{1}{2}&-1+1\\1-1&-3+2\end{array}\right]= \left[\begin{array}{cc}-\frac{1}{6}&0\\0&-1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D%26-1%5C%5C-%5Cfrac%7B1%7D%7B4%7D%26%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B2%7D%26-1%2B1%5C%5C1-1%26-3%2B2%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5Cfrac%7B1%7D%7B6%7D%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D)
Thus, as can be seen we can obtain a diagonal matrix that is a product of non diagonal matrices.