Answer: see explanation
Explanation:
A. substrate
B. Active site
C. Enzyme binds with substrate
D. Active site of enzyme
E. Products leaving active site
Simplified enzymatic reaction. The substrate reversibly binds to the active site of the enzyme, forming the enzyme-substrate (ES) complex. The bound substrate is converted to product by catalytic groups in the active site, forming the enzyme-product complex (EP). The bound products are released, returning the enzyme to its unbound form, ready to catalyze another round of converting substrate to product.
Answer:
The answer to the question is C
Explanation:
It is used for all I and II and III
Answer:
<u><em>Galapagos finches</em></u><u> have various beak sizes that make foraging for food more successful.</u>
Explanation:
Organisms evolve over time due to changes in their genome. These are pontaneous, and occur in DNA at random. These changes are called mutations and form alleles or different forms of a gene.
Over time within a population, the number alleles increase the variation of the population. These variants may confer specific traits within an individual, that may confer a biological advantage.
Thus, the trait may make the organisms more capable of obtaining food, shelter a mate etc. or ensure survival, i.e. they are able to pass on their genes to the next generation.
Answer:
Ionic bonding When metals react with non-metals, electrons are transferred from the metal atoms to the non-metal atoms, forming ions . The resulting compound is called an ionic compound .
Explanation:
Explanation:
The inbreeding process, are blood crossings between relatives who have a common ancestor. Inbreeding leads to an increase in the frequency of homozygous genotypes and a decrease in the frequency of heterozygotes. We may also note that although changes in genotypic frequencies occur, no changes in allelic frequencies are observed over successive generations of self-fertilization. The main consequence of 2 individuals sharing one or more common ancestors is that they may carry replicas (identical copies) of one or more genes present in these ancestors. And if these individuals mate, they can pass on such replicas to their offspring, generating self-sibling offspring, that is, with two identical copies of the same gene that was present in these common ancestors.