Trigonometric Identities.
To solve this problem, we need to keep in mind the following:
* The tangent function is negative in the quadrant II
* The cosine (and therefore the secant) function is negative in the quadrant II
* The tangent and the secant of any angle are related by the equation:
![\sec ^2\theta=\tan ^2\theta+1](https://tex.z-dn.net/?f=%5Csec%20%5E2%5Ctheta%3D%5Ctan%20%5E2%5Ctheta%2B1)
We are given:
![\text{tan}\theta=-\frac{\sqrt[]{14}}{4}](https://tex.z-dn.net/?f=%5Ctext%7Btan%7D%5Ctheta%3D-%5Cfrac%7B%5Csqrt%5B%5D%7B14%7D%7D%7B4%7D)
And θ lies in the quadrant Ii.
Substituting in the identity:
![\begin{gathered} \sec ^2\theta=(-\frac{\sqrt[]{14}}{4})^2+1 \\ \text{Operating:} \\ \sec ^2\theta=\frac{14}{16}+1 \\ \sec ^2\theta=\frac{14+16}{16} \\ \sec ^2\theta=\frac{30}{16} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csec%20%5E2%5Ctheta%3D%28-%5Cfrac%7B%5Csqrt%5B%5D%7B14%7D%7D%7B4%7D%29%5E2%2B1%20%5C%5C%20%5Ctext%7BOperating%3A%7D%20%5C%5C%20%5Csec%20%5E2%5Ctheta%3D%5Cfrac%7B14%7D%7B16%7D%2B1%20%5C%5C%20%5Csec%20%5E2%5Ctheta%3D%5Cfrac%7B14%2B16%7D%7B16%7D%20%5C%5C%20%5Csec%20%5E2%5Ctheta%3D%5Cfrac%7B30%7D%7B16%7D%20%5Cend%7Bgathered%7D)
Taking the square root and writing the negative sign for the secant:
3x² - 5x + 2
= 3x² - 3x - 2x + 2
= 3x(x-1) - 2(x-1)
= (x-1)(3x-2)
C: 24
both of the missing sides are equal to 4
According to the question,
6x + 90 = -42
<h3>To Find:</h3>
The value of x.
<h3>Solution:</h3>
6x = -42 + 90
or, x = 48/6
or, x = 8
<h2>Answer:</h2>
The value of x is 8.