Step-by-step explanation:
product=× three=3 a number is unknown =x plus=+ five=5 is=equals to 20
3×x +5=20
3x+5=20
Subtract 5 from both sides
3x+5-5=20-5
3x=15
3x/3=15/3
x=5
By inspection, it's clear that the sequence must converge to

because

when

is arbitrarily large.
Now, for the limit as

to be equal to

is to say that for any

, there exists some

such that whenever

, it follows that

From this inequality, we get




As we're considering

, we can omit the first inequality.
We can then see that choosing

will guarantee the condition for the limit to exist. We take the ceiling (least integer larger than the given bound) just so that

.
Step-by-step explanation:
log (√1000000x)
Rewrite √1000000x as (1000000x)1/2.
expand long ((1000000x)1/2) by moving 1/2
oby moving logarithm.
1/2 longth (1000000x)
Rewrite
log
(1000000x) as log(1000000)+log(x).
1/2(log(1000000)+log(x))
Logarithm base 10 of 1000000 is 6.
1/2(6+log(x))
Apply the distributive property.
1/2.6+1/2 log(x)
Cancel the common factor of 2.
3+1/2 long(x)
Combine 1/2 and log(x)
3+ long(x)/2
Answer:
See attached sheet
Step-by-step explanation:
Don’t open that link above me bc they’ll track your ip address