1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cloud [144]
3 years ago
6

A bag of ice pops contains 2 flavored raspberry, 5 flavored lemon, and 3 flavored lime. Find the probability of each event.

Mathematics
1 answer:
alexira [117]3 years ago
8 0

Answer:

A) 2/10 or 20%

B) 3/10 or 30%

Step-by-step explanation:

There are 10 ice pops.

10 is going to be your denominator

Your numerator is going to be whatever amount of ice pops is.

After finding your fraction, divide the numerator by the denominator.

Lastly turn your decimal into a fraction.

2/10=0.2=20%

Hope I helped you.

You might be interested in
Simplify: cos2x-cos4 all over sin2x + sin 4x
GrogVix [38]

Answer:

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}=\tan\left(x\right)

Step-by-step explanation:

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}

Apply formula:

\cos\left(A\right)-\cos\left(B\right)=-2\cdot\sin\left(\frac{A+B}{2}\right)\cdot\sin\left(\frac{A-B}{2}\right) and

\sin\left(A\right)+\sin\left(B\right)=2\cdot\sin\left(\frac{A+B}{2}\right)\cdot\sin\left(\frac{A-B}{2}\right)

We get:

=\frac{-2\cdot\sin\left(\frac{2x+4x}{2}\right)\cdot\sin\left(\frac{2x-4x}{2}\right)}{2\cdot\sin\left(\frac{2x+4x}{2}\right)\cdot\cos\left(\frac{2x-4x}{2}\right)}

=\frac{-\sin\left(\frac{2x-4x}{2}\right)}{\cos\left(\frac{2x-4x}{2}\right)}

=\frac{-\sin\left(\frac{-2x}{2}\right)}{\cos\left(\frac{-2x}{2}\right)}

=\frac{-\sin\left(-x\right)}{\cos\left(-x\right)}

=\frac{-\cdot-\sin\left(x\right)}{\cos\left(x\right)}

=\frac{\sin\left(x\right)}{\cos\left(x\right)}

=\tan\left(x\right)

Hence final answer is

\frac{\cos\left(2x\right)-\cos\left(4x\right)}{\sin\left(2x\right)+\sin\left(4x\right)}=\tan\left(x\right)

6 0
3 years ago
What is the range of the function of the graph​
Alex_Xolod [135]

Answer : Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set of possible output values, which are shown on the y-axis.

GOOD LUCK

5 0
3 years ago
(6-3)÷3-6+2 show work
BigorU [14]
(6-3)÷3-6+2
3÷3-6+2
1-6+2
-5+2
-3
4 0
3 years ago
A truck makes a trip of 14 hours, what was the speed if it traveled 2438 km?
lesantik [10]

Answer:

174

Step-by-step explanation:

I divided 2438 by 14 and got 174 mph.

6 0
3 years ago
Read 2 more answers
Please for the love of god anwser my question lay correctly I really need your help :( I will give 25 points :)! This is geometr
tangare [24]

Answer:

\displaystyle \rm  A_{ \text{c  - pentagon}} =41

\rm \displaystyle P _{ \rm c - pentagon} =  20+ 4 \sqrt{2}

Step-by-step explanation:

we have a square and a triangle

we want to figure out the area and the perimeter of the pentagon

to figure out the area of the pentagon we can use the given formula:

\displaystyle \rm  A_{ \text{c  - pentagon}} = A_{ \text{squre}} - A_{ \text{triangle}}

let's figure out A_{\rm square}:

since the given shape is a square Every angle of its 90° Thus the triangle is a right angle triangle

therefore the height is 4

\displaystyle A _{ \rm triangle} =  \frac{1}{2}  \times b \times h

substitute h and b

\displaystyle A _{ \rm triangle} =  \frac{1}{2}  \times 4 \times 4

reduce fraction:

\displaystyle A _{ \rm triangle} =   2 \times 4

simplify multiplication:

\displaystyle A _{ \rm triangle} =   8

likewise square

\displaystyle A _{ \rm squre} =  {s}^{2}

substitute s:

\displaystyle A _{ \rm squre} =  {7}^{2}

simplify square

\displaystyle A _{ \rm squre} =  49

hence,

\displaystyle \rm  A_{ \text{c - pentagon}} =49- 8

\displaystyle \rm  A_{ \text{c  - pentagon}} =41

to figure out perimeter

let's figure out hypotenuse first

\displaystyle h =  \sqrt{ {4}^{2}   +  {4}^{2} }

\displaystyle h =  \sqrt{ 16  +  16}

\displaystyle h = 4 \sqrt{2}

therefore,

\rm \displaystyle P _{ \rm c - pentagon} = 3 + 3 + 4 \sqrt{2}  + 7 + 7

\rm \displaystyle P _{ \rm c - pentagon} = 6 + 4 \sqrt{2}  + 14

\rm \displaystyle P _{ \rm c - pentagon} =  20+ 4 \sqrt{2}

5 0
3 years ago
Other questions:
  • The average salary for a construction worker is $29,160 per year. A veterinarian makes on average $84,460. If you consider the e
    10·2 answers
  • 4 = 3t – 2 solve for t
    12·1 answer
  • How do you solve this?
    5·1 answer
  • Point) a norman window has the shape of a rectangle with a semi circle on top; diameter of the semicircle exactly matches the wi
    14·1 answer
  • 1
    10·1 answer
  • Lisa drank 4/5
    10·1 answer
  • 585 divided by 5 is?
    15·2 answers
  • Bella is learning to type. She typed a letter to her teacher but misspelled 8 words. If she misspelled 25% of the words she type
    8·1 answer
  • Express the following in the form a + bi, where a and b are real numbers:
    14·1 answer
  • What is the answer to 4x+12=24
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!