4. SOLVE FOR X:
Using the Alternate Interior Angles Theorem, we know that the 67 degree angle is congruent with the (12x - 5) degree angle. With this information, all I have to do is set the two equal to each other and solve for x.
67 = 12x - 5
67 + 5 = 12x - 5 + 5
72/12 = 12x/12
6 = x
x = 6
SOLVE FOR Y:
Using the Vertical Angles theorem, we know that angle y must be congruent to the 67 degree angle.
y = 67 degrees.
5. SOLVE FOR Y:
Alternate exterior angles: 6(x - 12) = 120
6x - 72 + 72 = 120 + 72
6x/6 = 192/6
x = 32
SOLVE FOR Y:
6((32) - 12) + y = 180
192 - 72 + y = 180
120 + y - 120 = 180 - 120
y = 60
The given expression is ![\frac{\sqrt{2}}{\sqrt[3]{2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%20%20%20%20)
This can be simplified using the radical properties as below
![\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}} \\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}} \\\\](https://tex.z-dn.net/?f=%20%5C%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%20%20%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%20)
Now using exponent properties we can write
![\\\ \frac{\sqrt{2}}{\sqrt[3]{2}}=\frac{2^{\frac{1}{2}}}{2^\frac{1}{3}}=2^{\frac{1}{2}-\frac{1}{3}} \\\\\frac{\sqrt{2}}{\sqrt[3]{2}}=2^{\frac{3-2}{6}}=2^\frac{1}{6}\\\\= \sqrt[6]{2}\\](https://tex.z-dn.net/?f=%20%5C%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2%5E%5Cfrac%7B1%7D%7B3%7D%7D%3D2%5E%7B%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%5C%5C%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D2%5E%7B%5Cfrac%7B3-2%7D%7B6%7D%7D%3D2%5E%5Cfrac%7B1%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Csqrt%5B6%5D%7B2%7D%5C%5C%20)
Answer:
x = 26
Step-by-step explanation:
Answer:
25
Step-by-step explanation:
-28+53
Hope this helps! :)