Answer:
(f + g)(x) = 5x + 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 2x - 6
g(x) = 3x + 9
(f + g)(x) is f(x) + g(x)
<u>Step 2: Find</u>
- Substitute in function values: (f + g)(x) = 2x - 6 + 3x + 9
- Combine like terms: (f + g)(x) = 5x + 3
Answer:
24
Step-by-step explanation:
f(6) = -6
g(5) = -5
Now, we can plug in these values!
-6 - 6(-5) = -6 + 30 = 24
Answer:
18
Step-by-step explanation:
You have 25 when you are done, but you made 7, so subtract that from 27.
25-7 equals 18.
Answer:
23
Step-by-step explanation:
Answer:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)
Step-by-step explanation:
We want to
![4x \sqrt[3]{4 {x}^{2} } (2 \sqrt[3]{32 {x}^{2} } - x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%282%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We expand to obtain:
![4x \sqrt[3]{4 {x}^{2} } \times 2 \sqrt[3]{32 {x}^{2} } -4x \sqrt[3]{4 {x}^{2} } \times x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%5Ctimes%20%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We now simplify
![8x \sqrt[3]{4 {x}^{2} \times 32 {x}^{2} } -4 {x}^{2} \sqrt[3]{4 {x}^{2} \times 2x}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%2032%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x%7D%20)
We multiply the radicand
![8x \sqrt[3]{64 \times {x}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{8 {x}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%20%7Bx%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B8%20%7Bx%7D%5E%7B3%7D%7D%20)
Or
![8x \sqrt[3]{ {(4x)}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{{(2x)}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B%20%7B%284x%29%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B%7B%282x%29%7D%5E%7B3%7D%7D%20)
We take cube root to get:
![8x \times 4x\sqrt[3]{ 2x } -4 {x}^{2} \times 2x](https://tex.z-dn.net/?f=8x%20%20%5Ctimes%204x%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x)
We multiply out to get:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)