The parabola divises the plan into 2 parts. Part 1 composes the point A, part 2 composes the points C, D, F.
+ All the points (x;y) satisfies: -y^2+x=-4 is on the <span>parabola.
</span>+ All the points (x;y) satisfies: -y^2+x< -4 is in part 1.
+ All the points (x;y) satisfies: -y^2+x> -4 is in part 2<span>.
And for the question: "</span><span>Which of the points satisfy the inequality, -y^2+x<-4"
</span>we have the answer: A and E
Answer:
Step-by-step explanation:
Answer:
The answer is y=-1x+8 or you can write it this way y=-x+8 either way will work fine.
Step-by-step explanation:
y=mx+b
m=-1
y-y=m(x-x¹)
y-1=-1(x-7)
y-1=-1x+7
+1 +1
y=-x+8
I hope this helps:)
Answer:
$8.00
Step-by-step explanation:
The problem statement gives two relations between the prices of two kinds of tickets. These can be used to write a system of equations for the ticket prices.
__
<h3>setup</h3>
Let 'a' and 'c' represent the prices of adult and children's tickets, respectively. The given relations can be expressed as ...
a - c = 1.50 . . . . . . . adult tickets are $1.50 more
175a +325c = 3512.5 . . . . . total revenue from ticket sales.
__
<h3>solution</h3>
We are only interested in the price of an adult ticket, so we can eliminate c to give one equation we can solve for 'a'. Using the first equation, an expression for c is ...
c = a -1.50
Substituting that into the second equation, we have ...
175a +325(a -1.50) = 3512.50
500a -487.50 = 3512.50 . . . . . . simplify
500a = 4000 . . . . . . add 487.50
a = 8 . . . . . . . . . divide by 500
An adult ticket costs $8.