Answer:
I'm pretty sure it would be (5,6)
Step-by-step explanation:
Reflecting a point over the Y-axis would change the x-coordinate, but not the y-coordinate
Answer:
9 * 10^16
Step-by-step explanation:
2 * 10^16
+7 * 10^16
9 * 10^16
Answer:
![A=1,720.16\ units^2](https://tex.z-dn.net/?f=A%3D1%2C720.16%5C%20units%5E2)
Step-by-step explanation:
we know that
The area of the trapezoid is equal to
![A=\frac{1}{2}(DC+AB)DE](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%28DC%2BAB%29DE)
step 1
Find the measure of angle DAE
m∠ADC+m∠DAE=180° -----> by consecutive interior angles
we have
m∠ADC = 134°
substitute
134°+m∠DAE=180°
m∠DAE=180°-134°=46°
step 2
In the right triangle ADE
Find the length side AE
cos(∠DAE)=AE/AD
![AE=cos(46\°)(40)\\AE=27.79\ units](https://tex.z-dn.net/?f=AE%3Dcos%2846%5C%C2%B0%29%2840%29%5C%5CAE%3D27.79%5C%20units)
step 3
In the right triangle ADE
Find the length side DE
sin(∠DAE)=DE/AD
![DE=sin(46\°)(40)\\DE=28.77\ units](https://tex.z-dn.net/?f=DE%3Dsin%2846%5C%C2%B0%29%2840%29%5C%5CDE%3D28.77%5C%20units)
step 4
Find the area of ABCD
![A=\frac{1}{2}(DC+AB)DE](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%28DC%2BAB%29DE)
we have
![DC=32\ units\\AB=DC+2(AE)=32+2(27.79)=87.58\ units\\DE=28.77\ units](https://tex.z-dn.net/?f=DC%3D32%5C%20units%5C%5CAB%3DDC%2B2%28AE%29%3D32%2B2%2827.79%29%3D87.58%5C%20units%5C%5CDE%3D28.77%5C%20units)
substitute
![A=\frac{1}{2}(32+87.58)28.77](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%2832%2B87.58%2928.77)
![A=1,720.16\ units^2](https://tex.z-dn.net/?f=A%3D1%2C720.16%5C%20units%5E2)
Answer:
h(6) = 20
Step-by-step explanation:
h(x) = 2x + 8
h(6) = 2(6) + 8
h(6) = 12 + 8
h(6) = 20
Answer:
8 2/3 divided by 4 1/8=2 1/10 is Correct
exactly 2 10/99