<h2>
Answer:</h2>
<em><u>Recursive equation for the pattern followed is given by,</u></em>

<h2>
Step-by-step explanation:</h2>
In the question,
The number of interaction for 1 child = 0
Number of interactions for 2 children = 1
Number of interactions for 3 children = 5
Number of interaction for 4 children = 14
So,
We need to find out the pattern for the recursive equation for the given conditions.
So,
We see that,

Therefore, on checking, we observe that,

On checking the equation at the given values of 'n' of, 1, 2, 3 and 4.
<u>At, </u>
<u>n = 1</u>

which is true.
<u>At, </u>
<u>n = 2</u>

Which is also true.
<u>At, </u>
<u>n = 3</u>

Which is true.
<u>At, </u>
<u>n = 4</u>

This is also true at the given value of 'n'.
<em><u>Therefore, the recursive equation for the pattern followed is given by,</u></em>

sorry i have to comment to "answer" a question so i can ask a question. sorry have a nice day.
Answer:
k = 13
smallest zero = -6
Step-by-step explanation:
f(x) is basically the function of x.
x could be any integer. f(x) is the solution of the function of x.
f(x) is defined as x² + 3x - 10
f(x) = x² + 3x - 10
Now, f(x+5) = x² + kx + 30
This statement here says that if the value of x is x+5, then the answer would be x² + kx + 30.
f(x) = x² + 3x - 10
f(x+5) = (x+5)² + 3(x+5) - 10
f(x+5) = x² + 10x + 25 + 3x + 15 - 10
f(x+5) = x² + 13x + 40 - 10
f(x+5) = x² + 13x + 30
x² + 13x + 30 = x² + kx + 30
hence, k = 13
Smallest zero = The smallest x value.
f(x+5) = x² + 13x + 30
Let's take f(x+5) = 0
x² + 13x + 30 = 0
which two numbers products give us 30 and add up to 13?
== 6 and 5
(x+6)(x+5) = 0
x+6 = 0
x = -6
x+5 = 0
x = -5
The two solutions are -6 and -5
The smallest out of these two is -6.
Answer:
899
Step-by-step explanation:
bc im big brain