Answer:
336
Step-by-step explanation:
Required Formulas:-
1. Number of ways to select x things out of n things = ⁿCₓ
2. Number of ways to arrange n things when a things and b things are similar = n!/(a!*b!)
Since we have to choose 8 colors and we are having 3 different colors, it is only possible when we select 2 different colors (e.g. 5 red and 3 blue). To find all possible ways we will have to find all unique arrangements of selected color.
Using formula (1), number of ways to select 2 colors out of given 3 colors = ³C₂ = 3
Using formula (2), finding all unique arrangements when 5 stripes are of one color and 3 stripes are of second color = 8!/(3!*5!) = 56
Suppose, we can choose 5 stripes from red color and 3 stripes from blue color or 5 strips from blue color and 3 strips from red color. So there are 2 possibilities of arranging every 2 colors we choose .
∴ Answer=3*56*2 = 336