1. Let
be the three points of intersection, i.e. the solutions to
. They are approximately
![a\approx-3.638](https://tex.z-dn.net/?f=a%5Capprox-3.638)
![b\approx-1.862](https://tex.z-dn.net/?f=b%5Capprox-1.862)
![c\approx0.889](https://tex.z-dn.net/?f=c%5Capprox0.889)
Then the area
is
![\displaystyle\int_a^c|f(x)-g(x)|\,\mathrm dx=\int_a^b(g(x)-f(x))\,\mathrm dx+\int_b^c(f(x)-g(x))\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_a%5Ec%7Cf%28x%29-g%28x%29%7C%5C%2C%5Cmathrm%20dx%3D%5Cint_a%5Eb%28g%28x%29-f%28x%29%29%5C%2C%5Cmathrm%20dx%2B%5Cint_b%5Ec%28f%28x%29-g%28x%29%29%5C%2C%5Cmathrm%20dx)
since over the interval
we have
, and over the interval
we have
.
![\displaystyle\int_a^b\left(\dfrac{x+1}3-\cos x\right)\,\mathrm dx+\int_b^c\left(\cos x-\dfrac{x+1}3\right)\,\mathrm dx\approx\boxed{1.662}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_a%5Eb%5Cleft%28%5Cdfrac%7Bx%2B1%7D3-%5Ccos%20x%5Cright%29%5C%2C%5Cmathrm%20dx%2B%5Cint_b%5Ec%5Cleft%28%5Ccos%20x-%5Cdfrac%7Bx%2B1%7D3%5Cright%29%5C%2C%5Cmathrm%20dx%5Capprox%5Cboxed%7B1.662%7D)
2. Using the washer method, we generate washers with inner radius
and outer radius
. Each washer has volume
, so that the volume is given by the integral
![\displaystyle\pi\int_a^b\left((2-\cos x)^2-\left(2-\frac{x+1}3\right)^2\right)\,\mathrm dx+\pi\int_b^c\left(\left(2-\frac{x+1}3\right)^2-(2-\cos x)^2\right)\,\mathrm dx\approx\boxed{18.900}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cpi%5Cint_a%5Eb%5Cleft%28%282-%5Ccos%20x%29%5E2-%5Cleft%282-%5Cfrac%7Bx%2B1%7D3%5Cright%29%5E2%5Cright%29%5C%2C%5Cmathrm%20dx%2B%5Cpi%5Cint_b%5Ec%5Cleft%28%5Cleft%282-%5Cfrac%7Bx%2B1%7D3%5Cright%29%5E2-%282-%5Ccos%20x%29%5E2%5Cright%29%5C%2C%5Cmathrm%20dx%5Capprox%5Cboxed%7B18.900%7D)
3. Each semicircular cross section has diameter
. The area of a semicircle with diameter
is
, so the volume is
![\displaystyle\frac\pi8\int_a^b\left(\frac{x+1}3-\cos x\right)^2\,\mathrm dx\approx\boxed{0.043}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%5Cpi8%5Cint_a%5Eb%5Cleft%28%5Cfrac%7Bx%2B1%7D3-%5Ccos%20x%5Cright%29%5E2%5C%2C%5Cmathrm%20dx%5Capprox%5Cboxed%7B0.043%7D)
4.
is continuous and differentiable everywhere, so the the mean value theorem applies. We have
![f'(x)=-\sin x](https://tex.z-dn.net/?f=f%27%28x%29%3D-%5Csin%20x)
and by the MVT there is at least one
such that
![-\sin c=\dfrac{\cos\pi-\cos0}{\pi-0}](https://tex.z-dn.net/?f=-%5Csin%20c%3D%5Cdfrac%7B%5Ccos%5Cpi-%5Ccos0%7D%7B%5Cpi-0%7D)
![\implies\sin c=\dfrac2\pi](https://tex.z-dn.net/?f=%5Cimplies%5Csin%20c%3D%5Cdfrac2%5Cpi)
![\implies c=\sin^{-1}\dfrac2\pi+2n\pi](https://tex.z-dn.net/?f=%5Cimplies%20c%3D%5Csin%5E%7B-1%7D%5Cdfrac2%5Cpi%2B2n%5Cpi)
for integers
, but only one solution falls in the interval
when
, giving ![c=\sin^{-1}\dfrac2\pi\approx\boxed{0.690}](https://tex.z-dn.net/?f=c%3D%5Csin%5E%7B-1%7D%5Cdfrac2%5Cpi%5Capprox%5Cboxed%7B0.690%7D)
5. Take the derivative of the velocity function:
![v'(t)=2t-9](https://tex.z-dn.net/?f=v%27%28t%29%3D2t-9)
We have
when
. For
, we see that
, while for
, we see that
. So the particle is speeding up on the interval
and slowing down on the interval
.