Answer:
i think that the answer is that it would decrease
Explanation:
hope this helps
sorry if the answer is wrong
Answer:
There are 19 atom sin total in antimony silicate,
.
Explanation:
Number of antimony atoms = 4 × 1 = 4
Number of silicon atoms = 3 × 1 = 3
Number of oxygen atoms = 3 × 4 = 12
Number of atoms in antimony silicate:
= 4 + 3 + 12 = 19
There are 19 atom sin total in antimony silicate,
.
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
Answer: 530 hours
Explanation:
The reduction of Nickel ions to nickel is shown as:
of electricity deposits 1 mole of Nickel
1 mole of Nickel weighs = 58.7 g
Given quantity = 18.0 kg = 18000 g (1kg=1000g)
58.7 g of Nickel is deposited by 193000 C of electricity
18000 g of Nickel is deposited by =
of electricity
where Q= quantity of electricity in coloumbs = 59182282.8C
I = current in amperes = 31.0 A
t= time in seconds = ?

(1h=3600 sec)

Thus 530 hours are required to plate 18.0 kg of nickel onto the cathode if the current passed through the cell is held constant at 31.0 A
Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:
