You most likely only need the first 3 digits after the decimal point but if you needed more i added them! hope this helps
Answer: False
Step-by-step explanation:
As time goes by, the resale value of a computer tends to drop because it tends not to function as properly as it did before, and the quality of new computers on the market drives the price of older computers down. So you can expect that as the amount of time increases, the resale value will decrease, resulting in a negative correlation
Answer:
Volume of the frustum = ⅓πh(4R² - r²)
Step-by-step explanation:
We are to determine the volume of the frustum.
Find attached the diagram obtained from the given information.
Let height of small cone = h
height of the large cone = H
The height of a small cone is a quarter of the height of the large cone:
h = ¼×H
H = 4h
Volume of the frustum = volume of the large cone - volume of small cone
volume of the large cone = ⅓πR²H
= ⅓πR²(4h) = 4/3 ×π×R²h
volume of small cone = ⅓πr²h
Volume of the frustum = 4/3 ×π×R²h - ⅓πr²h
Volume of the frustum = ⅓(4π×R²h - πr²h)
Volume of the frustum = ⅓πh(4R² - r²)
Answer:
4 liters of 60% solution; 2 liters of 30% solution
Step-by-step explanation:
I like to use a simple, but effective, tool for most mixture problems. It is a kind of "X" diagram as in the attachment.
The ratios of solution concentrations are 3:6:5, so I've used those numbers in the diagram. The constituent solutions are on the left; the desired mixture is in the middle, and the numbers on the other legs of the X are the differences along the diagonals: 6 - 5 = 1; 5 - 3 = 2. This tells you the ratio of 60% solution to 30% solution is 2 : 1.
These ratio units (2, 1) add to 3. We want 6 liters of mixture, so we need to multiply these ratio units by 2 liters to get the amounts of constituents needed. The result is 4 liters of 60% solution and 2 liters of 30% solution.
_____
If you're writing equations, it often works well to let the variable represent the quantity of the greatest contributor—the 60% solution. Let the volume of that (in liters) be represented by v. Then the total volume of iodine in the mixture is ...
... 0.60·v + 0.30·(6 -v) = 0.50·6
... 0.30v = 0.20·6 . . . . subtract 0.30·6, collect terms
... v = 6·(0.20/0.30) = 4 . . . . divide by the coefficient of v
4 liters of 60% solution are needed. The other 2 liters are 30% solution.
In this question, you are only able to cancel out the (x + 5). The others are unable to be cancelled.