Answer:
THE GROUND IS THE MEDIUM OF SEISMIC WAVES
Answer:
Explanation:
Given that,
Number of turn N = 40
Diameter of the coil d= 11cm = 0.11m
Then, radius = d/2 = 0.11/2 =0.055m
r = 0.055m
Then, the area is given as
A =πr²
A = π × 0.055²
A = 9.503 × 10^-3 m²
Magnetic Field B = 0.35T
Magnetic field reduce to zero in 0.1s, t = 0.1s
so we want to find induce electric field. To find the electric field,(E) we need to find the electric potential (V).
E.M.F is given as
ε = —N • dΦ/dt
Where magnetic flux is given as
Φ = BA
Then, ε = —N • dΦ/dt
ε = —N • dBA/dt
ε = —NBA/t
Then, its magnitude is
ε = NBA/t
Inserting the values of N, B, A and t
ε = 40×0.35×9.503×10^-3/0.1
ε = 1.33 V
Then, using the relationship between Electric field and electric potential
V = Ed
ε = E•d
E = ε/d
E = 1.33/0.11
E = 12.09 V/m
C. A step-by-step process that takes time, and is essential for learning physics concepts.
Answer:
C. At the bottom of the circle.
Explanation:
Lets take
Radius of the circle = r
Mass = m
Tension = T
Angular speed = ω
The radial acceleration towards = a
a= ω² r
Weight due to gravity = mg
<h3>At the bottom condition</h3>
T - m g = m a
T = m ω² r + m g
<h3>At the top condition</h3>
T + m g = m a
T= m ω² r -m g
From above equation we can say that tension is grater when ball at bottom of the vertical circle.
Therefore the answer is C.
C. At the bottom of the circle.
Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation: