1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
10

After the cable snaps and the safety system fails, an elevator cab free-falls from a height of 31 m. During the collision at the

bottom of the elevator shaft, a 90 kg passenger is stopped in 4.5 ms. (Assume that neither the passenger nor the cab rebounds.) (a) What is the magnitude of the impulse on the passenger during the collision? N · s (b) What is the magnitude of the average force on the passenger during the collision? N Suppose the passenger were to jump upward with a speed of 7.1 m/s relative to the cab floor just before the cab hits the bottom of the shaft. Assume the same stopping time as above. (c) What is the magnitude of the impulse on the passenger during the collision? N · s (d) What is the magnitude of the average force on the passenger during the collision? N
Physics
1 answer:
kakasveta [241]3 years ago
8 0

(a) 2214 kg m/s

First of all, we need to find the speed of the passenger just before hitting the ground. This can be found by using the law of conservation of energy: in fact, the initial gravitational energy of the passenger is all converted into kinetic energy as he falls down:

mgh=\frac{1}{2}mv^2

where

m = 90 kg is the mass of the passenger

g = 9.8 m/s^2 is the acceleration due to gravity

h = 31 m is the initial height

v is the final speed of the passenger

Solving the equation for v,

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(31 m)}=24.6 m/s

Now we can find the impulse, which is equal to the change in momentum of the passenger:

I=\Delta p = m\Delta v = (90 kg)(0-24.6 m/s)=-2214 kg m/s

And the negative sign means the impulse is in the opposite direction to the motion of the passenger.

(b) 4.92\cdot 10^5 N

The magnitude of the impulse is equal to the product between the average force, F, and the time of the collision, \Delta t

I=F\Delta t

Since we know

I = 2214 kg m/s (impulse)

t = 4.5 ms = 0.0045 s (time of the collision)

We can solve the formula to find the average force, F:

F=\frac{I}{\Delta t}=\frac{2214 kg m/s}{0.0045 s}=4.92\cdot 10^5 N

(c) 1575 kg m/s

In this case, the passenger jumps upward with a speed of 7.1 m/s relative to the cab floor just before hitting the ground. Since the cab floor is moving with a speed of 24.6 m/s downward, the velocity of the passenger relative to the ground is

v=24.6 m/s - 7.1 m/s=17.5 m/s (downward)

So this time the impulse will be:

I=\Delta p = m\Delta v = (90 kg)(0-17.5 m/s)=-1575 kg m/s

(d) 3.5\cdot 10^5 N

This part of the problem can be solved as part b). The magnitude of the impulse is equal to the product between the average force, F, and the time of the collision, \Delta t

I=F\Delta t

Since we know

I = 1575 kg m/s (impulse)

t = 4.5 ms = 0.0045 s (time of the collision)

We can solve the formula to find the average force, F:

F=\frac{I}{\Delta t}=\frac{1575 kg m/s}{0.0045 s}=3.5\cdot 10^5 N

You might be interested in
Can someone help me
cestrela7 [59]

Answer:

c

Explanation:

its because an atom needs more of the other particles than the number of electrons

7 0
3 years ago
To calculate acceleration you must know both the objects velocity and_____
amm1812

You need to know the time as well.

8 0
3 years ago
The x vector component of a displacement vector has a magnitude of 146 m and points along the negative x axis. The y vector comp
larisa86 [58]

Answer:  

a) the magnitude of r is  184.62

b) the direction is 37.74° south of the negative x-axis

   

Explanation:

Given the data in the question;

as illustrated in the image blow;

To find the the magnitude of r, we will use the Pythagoras theorem

r² = y² + x²

r = √( y² + x²)

we substitute

r = √((-113)² + (-146)²)

r = √(12769 + 21316 )

r = √(34085 )

r = 184.62

Therefore, the magnitude of r is  184.62

To find its direction, we need to find ∅

from SOH CAH TOA

tan = opposite / adjacent

tan∅ = -113 / -146

tan∅ = 0.77397

∅ = tan⁻¹( 0.77397 )

∅ = 37.74°

Therefore, the direction is 37.74° south of the negative x-axis

7 0
2 years ago
The reaction is at dynamic equilibrium.
DiKsa [7]

Answer:

Nitrogen and hydrogen combine at the same rate that ammonia breaks down.

Explanation:

7 0
3 years ago
Find the magnitude of the sum<br> of these two vectors:<br><br> 101 m<br> 60.0 °<br> 85.0 m
attashe74 [19]

Answer: 161.3

I have a acellus too and got this question correct, so I hope this helps y’all out

8 0
3 years ago
Other questions:
  • Compare the temperature of water as ice begins to form with the temperature of ice as it begins to melt
    10·1 answer
  • A particle moves in the xy plane with constant acceleration. At time zero, the particle is at x = 6 m, y = 8.5 m, and has veloci
    15·1 answer
  • According to Faraday's law, voltage can be changed by moving magnets away from the coil of wire. True False
    14·1 answer
  • What is the term that we use to describe two species living together?
    7·1 answer
  • NEED ANSWER ASAP
    6·2 answers
  • Find the inequality represented in the graph
    5·2 answers
  • Answer? physics Q for 3rd secondry
    8·1 answer
  • A 1kg object at the surface of the earth weighs 9.8N. (F=ma) Prove this by using the formula Fg = Gmm/r2. (Find the radius and t
    6·1 answer
  • The Newton's Cradle toy will slow down and stop because some of the energy is being transformed into s________ energy and also t
    11·1 answer
  • Below is a diagram of a weight on a spring. When the weight is pulled down and then released, the spring compresses and expands.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!