Answer:
3.9m/s
Explanation:
divide 95 with 24 to get your acceleration
Answer:
3/360 is 120. your velocity is 120
Explanation:
Since waves are moving, we define frequency as the number of waves that pass a given point in a specified unit of time. The unit commonly used is Hertz which is the number of wave cycles that pass a point in one second.
1) Data:
Vo = 20 m/s
α = 37°
Yo = 0
Y = 3m
2) Questions: V at Y = 3m and X at Y = 3 m
3) Calculate components of the initial velocity
Vox = Vo * cos(37°) = 15.97 m/s
Voy = Vo * sin(37°) = 12.04 m/s
4) Formulas
Vx = constant = 15.97 m/s
X = Vx * t
Vy = Voy - g*t
Y = Yo + Voy * t - g (t^2) / 2
5) Calculate t when Y = 3m (first time)
Use g ≈ 9.8 m/s^2
3 = 12.04 * t - 4.9 t^2
=> 4.9 t^2 - 12.04t + 3 = 0
Use the quadratic equation to solve the equation
=> t = 0.28 s and t = 2.18s
First time => t = 0.28 s.
6) Calculate Vy when t = 0.28 s
Vy = 12.04 m/s - 9.8 * 0.28s = 9.3 m/s
7) Calculate V:
V = √ [ (Vx)^2 + (Vy)^2 ] = √[ (15.97m/s)^2 + (9.30 m/s)^2 ] = 18.48 m/s
tan(β) = Vy/Vx = 9.30 / 15.97 ≈ 0.582 => β ≈ arctan(0.582) ≈ 30°
Answer: V ≈ 18.5 m/s, with angle ≈ 30°
8) Calculate X at t = 0.28s
X = Vx * t = 15.97 m/s * 0.28s = 4,47m ≈ 4,5m
Answer: X ≈ 4,5 m
Answer:
240 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of current in an electric field. The S.I unit of resistance is ohms (Ω).
The expression for resistance power and voltage is give as,
P = V²/R.......................... Equation 1
Where P = Power, V = Voltage, R = Resistance
Making R the subject of the equation,
R = V²/P.................... Equation 2
Given: V = 120 V, P = 60 W.
Substitute into equation 2
R = 120²/60
R = 240 Ω
Hence the resistance of the bulb = 240 Ω