Since the discriminant given has a value that is greater than zero, hence the roots of the quadratic equation are real and distinct.
<h3>Discriminant of a quadratic equation</h3>
Quadratic equation is an equation that has a leading degree of 2. The discriminant is used to determine the nature of the equation
If D > 0 , the roots of the quadratic equation are real and distinct.
If D < 0 , the roots of the quadratic equation are complex
Since the discriminant given has a value that is greater than zero, hence the roots of the quadratic equation are real and distinct.
Learn more on discriminant here: brainly.com/question/2507588
#SPJ1
an = a1+ d(n-1)
a1 =14
an=206 when n=25
206 = 14 + d (25-1)
206 = 14 + d * 24
subtract 14 from each side
192 = 24d
divide by 24 on each side
d=8
The common difference is 8
Answer:
23
Step-by-step explanation:
3(-2)2-2(-2)+7
3(4)-(-4)+7
12+4+7
Answer:
46.6
Step-by-step explanation:
