If the co-vertices are (0, 3) and (0, -3) where x is 0 and y has a value, then y is the minor axis. That means that the x axis is the major axis. Because of what the co-vertices are, the center of the ellipse is at the origin. The formula for an ellipse that has a horizontal major axis is

. The a value will always be larger than the b value, therefore, the a value goes under the coordinate that is the major axis. Here, its the x-axis. a is the distance that the outer edge of the ellipse is from the center. It's 8 units away from the center along the x axis and 3 units along the y axis from the center. So a = 8 and a^2 = 64; b = 3 and b^2 = 9. Our formula then is
-33,600. To get this you multiply -4,200 by 8
Answer:
2
Step-by-step explanation:
The base B represents the number you multiply and the exponent "x" tells you how many times you multiply the base, and you write it as "B^ x." For example, 8^3 is 8X8X8=512 where "8" is the base, "3" is the exponent and the whole expression is the power.
The table containing the data needed for this problem is attached on this answer. This data is used to determine the best fit line that is extracted from this multitude of points given. Best fit line is described as a line in which the variation of each point to the line is the minimum. We plot the data using MS Excel and is shown in the figure attached as well. We determine the trendline of the graph by the function in MS Excel. The equation of the trendline is expressed as <span>y = -26.059x + 722.63 in which the coefficient of determination, r^2 = 0.8947. </span>