Answer:
The answer is 2 6/8
Step-by-step explanation:
Answer:
Step-by-step explanation:
The directional derivative of a function in a particular direction u is given as the dot product of the unit vector in the direction of u and the gradient of the function
g(x,y) = sin(π(x−5y)
∇g = [(∂/∂x)î + (∂/∂y)j + (∂/∂z)ķ] [sin(π(x−5y))
(∂/∂x) g = (∂/∂x) sin (πx−5πy) = π [cos(π(x−5y))]
(∂/∂y) g = (∂/∂y) sin (πx−5πy) = - 5π [cos (π(x−5y))]
∇g = π [cos(π(x−5y))] î - 5π [cos (π(x−5y))] j
∇g = π [cos (π(x−5y))] [î - 5j]
So, the question requires a direction vector and a point to fully evaluate this directional derivative now.
Answer:
<em>The answer is 0</em>
<em>So I think no solutions</em>
Step-by-step explanation:
You gotta get each equation into slope-intercept form, nd when u do that 9x - 3y = 6 turns into y = 3x - 2, nd 5y = 15x + 10 turns into y = 3x + 2. Add the equations together, nd get 0.
Answer:
ok
Step-by-step explanation:
ok
Answer:
w= 6
Step-by-step explanation:
I just started by making an educated guess using the values already given. Then I inserted that into the problem to see if it worked.
L= 2w - 5
I used 6 as a random, educated guess for the value of w.
L = 2(6) - 5
L = 12-5
L = 7
Then, multiply L by 2 to account for both side lengths of the rectangle.
7(2)= 14
Subtract that value from the total perimeter to find what the width must equal.
26 - 14 = 12
Divide that answer by 2 since there are two sides for width.
12/2 = 6
I know this was kind of long, but I hope it helps! :)