Answer:
7.5 x 10⁻⁸N
Explanation:
Given parameters:
Mass 1 = 60kg
Mass 2 = 75kg
Distance between the bodies = 2m
Unknown:
Gravitational fore = ?
Solution:
The gravitational force between the two bodies can be derived using;
F =
G is the universal gravitation constant = 6.67 x 10⁻¹¹m³kg⁻¹s⁻²
Insert the parameters and solve;
F =
= 7.5 x 10⁻⁸N
Answer:
Convective zone, chromosphere, corona
Explanation:
A star like the Sun is divided into different layers according to pressure, density, temperature, and the mechanics of energy transport (in the case of the convective zone and radiative zone) for each of those layers.
In stars, there is an equilibrium between two forces, the force of gravity in the inward direction due to their own mass and the radiation pressure in the upward direction as a consequence of the nuclear reaction in their core, that is known as hydrostatic equilibrium.
That leads to different layers according with the properties described above.
Near the core, in the Sun, there is a radiative zone since radiation is the best mechanism of energy transport in this area. Then, in the next layer, it can be found that convection becomes a more efficient way of energy transport that radiation due to the fact that the inner part of the convection zone is at a greater temperature than the outer one.
Finally, there is the atmosphere of the Sun (chromosphere, photosphere, and corona).
Key terms:
Convection: Transport of energy due to different in density and temperature of a material (liquid, gas).
A radio wave is generated by a transmitter and then detected by a receiver. An antenna allows a radio transmitter to send energy into space and a receiver to pick up energy from space. Transmitters and receivers are typically designed to operate over a limited range of frequencies
Answer:
Momentum is the product of a moving object's mass and velocity . ... When two objects collide the total momentum before the collision is equal to the total momentum after the collision (in the absence of external forces). This is the law of conservation of momentum. It is true for all collisions.
Explanation: