Answer:
are characterized by one substance gaining an electron while another substance loses an electron
Explanation:
Redox reaction in chemical reaction in which one substance gaining an electron while another substance loses an electron. This means that one element is oxidize by losing an electron while the other is reduced by gaining an electron. The one oxidized is called reducing agent while the one reduced is called oxidizing agent.
Answer: a. 17.7 KJ/Mol
b. T=210K
Explanation:
Arsine, ash3 is a highly toxic compound used in the electronics industry for the production of semiconductors. its vapor pressure is 35 torr at – 111.95°c and 253 torr at – 83.6°c. using these data calculate.
the question isnt completely originally, but we could look at the likely derivation from the questions
(a) the standard enthalpy of vaporization
using the clausius clapeyron equation
In (PT1vap / PT2vap) = delta H (vap) / R ( (1/T1) - (1/T2) )
In (35Torr/253Torr) = delta H (vap) / 8.3145 ( (1/189.55) - (1/161.2) )
Therefore, Delta H (vap) = 17.7 KJ/Mol
b. Also the boiling point
What is the normal boiling point of arsine?
At the boiling point Pvap = atmospheric pressure = 1 atm=760 torr
substitution into the equation as stated in question 1
ln(760/253)=17700/8.314(1/189.55-1/T)
T=210K
Answer:
B. A car of mass 2000 kg with speed 7 m/s
Explanation:
The kinetic energy of an object is given by:

where m is the mass of the object and v is its speed.
From the formula, we see that the larger the mass and the speed of the object, the larger its kinetic energy. Among the choices given, we see that the car with largest mass and largest speed is car B, which has a mass of 2000 kg and speed of 7 m/s. Its kinetic energy is:

We can verify that the other cars have smaller kinetic energy. In fact:
- Car A: 
- Car C: 
- Car D: 
So, car B is the one which has most kinetic energy.
Calculating the average speed is simple using the formula <span>speed = distance/time</span>