B) The transfer of energy from the hydrosphere to the atmosphere
This is because oceans are part of the hydrosphere. As the air warms it flows up into the atmosphere.
Hope this helps!
Initial velocity of the object: 5 m/s
Explanation:
The figure in the problem is missing: find it in attachment.
The graph in the figure represents the velocity of an object (v) versus the time passed (t).
Here we are asked to find the initial velocity of the object.
This means that we have to find the velocity of the object when the time is zero, so when
t = 0
By looking at the corresponding value on the y-axis (velocity), we see that when t = 0, then
v = 5 m/s
Therefore, the initial velocity of the object is 5 m/s.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Well the diagram would look like the water cycle I think
When using parallax, astronomers calculate distance from the sun and not earth to improve on the accuracy of their measurement, since parallax angle decreases as star distance increases.
<h3>
What is parallax distance?</h3>
Parallax enables astronomers to measure the distances of far away stars by using trigonometry.
<h3>Why does astronomers measure parallax distance from sun?</h3>
As the distance of star increases, the parallax angle decreases, and great degree of accuracy is required for its measurement.
So taking a refence from the earth instead of the sun will impact the accuracy of their measurement.
Thus, when using parallax, astronomers calculate distance from the sun and not earth to improve on the accuracy of their measurement, since parallax angle decreases as star distance increases.
Learn more about parallax distance here: brainly.com/question/2128443
#SPJ1
Answer:
0.05806
Explanation:
= Mass of asteroid x
= Mass of asteroid y
= Distance from asteroid x = 140 km
= Distance from asteroid y = 581 km
m = Mass of asteroid
Force of gravity between asteroid x and the astronaut

Force of gravity between asteroid x and the astronaut

Here these two forces are equal as they are in equilibrium

The ratio of the masses of the asteroid is 0.05806