Answer:
The answer is the 2nd choice
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
10(10m+6)<=12
100m+60<=12 Distributive Property
100m <=12-60
100m <=-48
m <=-48/100
m <=-.48
This says values for m that are less than or equal to -.48
-.48 is between -1 and 0 so the answer is B
Answer:
$261,500
Step-by-step explanation:
What amount should Nash report as its December 31 inventory?
Item Amount
Goods on hand as per physical count $208,000
(+) Goods purchased from Swifty $30,000
Corporation FOB shipping point
(+) Goods sold to Marigold Corp <u>$23,500</u>
FOB destination (at cost value)
Ending inventory <u>$261,500</u>
<u />
<em>Notes</em><u>:
</u>
1) In case of FOB shipping point, the ownership of goods is transferred to the buyer when the goods are shipped and hence in the case of purchases from Swifty corporation, the goods should be included in the inventory of Nash's Trading Post as the goods are shipped and are in transit.
2) In case of FOB destination, the ownership of goods is transferred to the buyer when the goods reaches to the buyer, hence in the case of sales made to Marigold Corp, the goods are still in transit and the ownership is not transferred to Marigold Corp, hence Nash's Trading Post should included that goods in its inventory.
let's recall that the graph of a function passes the "vertical line test", however, that's not guarantee that its inverse will also be a function.
A function that has an inverse expression that is also a function, must be a one-to-one function, and thus it must not only pass the vertical line test, but also the horizontal line test.
Check the picture below, the left-side shows the function looping through up and down, it passes the vertical line test, in green, but it doesn't pass the horizontal line test.
now, check the picture on the right-side, if we just restrict its domain to be squeezed to only between [0 , π], it passes the horizontal line test, and thus with that constraint in place, it's a one-to-one function and thus its inverse is also a function, with that constraint in place, or namely with that constraint, cos(x) and cos⁻¹(x) are both functions.