Answer:
#1. Identity #2. 0 #3. No solution
Step-by-step explanation:
#1.
5y + 2 = (1/2)(10y+4)
5y + 2 = 5y + 2
This would be identity as the equation of the left and right are the same. This is not to be confused with no solution(explained below).
#2.
0.5b + 4 = 2(b+2)
0.5b + 4 = 2b + 4
0.5 b - 2b = 0
b = 0
#3.
-3x + 5 = -3x + 10
This equation has no solution because when you try to bring the -3x to one side, the x variable itself gets eliminated. So, how is it different from identity? Well in the first equation, it is true that when we try to bring the 5y one side it eliminates the y variable, however, that is also true for the constants(since if we try to bring the 2 to one side, it will be 2-2 which will equal 0, thus eliminating each other), but in this case, even if we remove the x, the constants will not equal 0, thus it will have no solution.
Answer:
3,432 m²
Step-by-step explanation:
The amount of aluminum in square meters needed to make the mailboxes = 1863(surface area of each mailbox)
Surface area of each mail box = ½(surface area of cylinder) + (Surface area of rectangular prism/box - area of the surface of the box that joins the half-cylinder)
✔️Surface area of ½-cylinder = ½[2πr(h + r)]
r = ½(0.4) = 0.2 m
h = 0.6 m
π = 3.14
Surface area of ½-cylinder = ½[2*3.14*0.2(0.6 + 0.2]
= 0.628(0.8)
Surface area of ½-cylinder = 0.5024 m²
✔️Surface area of the rectangular box/prism = 2(LW + LH + WH)
L = 0.6 m
W = 0.4 m
H = 0.55 m
Surface area = 2(0.6*0.4 + 0.6*0.55 + 0.4*0.55)
Surface area of rectangular box = 1.58 m²
✔️Area of the surface joining the half cylinder and the box = L*W = 0.6*0.4 = 0.24 m²
✅Surface area of 1 mailbox = (0.5024) + (1.58 - 0.24)
= 0.5024 + 1.34
= 1.8424
Amount of aluminum needed to make 1863 mailboxes = 1863 × 1.8424 = 3,432.3912
= 3,432 m²
To get you answer multiply .3 and 2.7
Equalities will have the words "is" or "equals" or "the same as" in the wording. These produce a unique solution.
Inequalities have phrases like "at most" or "at least" or "no more than" in them. Solutions are a range of values, ranging between 2 values, or from a particular value to positive or negative infinity.
Answer:
No, It is not a function!
Step-by-step explanation: