The answer is 27 because the are nine options which can be recombined in 3 independent ways. Therefore, 9*3=27
Answer:
x<0.5
Step-by-step explanation:
this is just like simplifiying equations if you've done that before
first you want to isolate the variable, so you want to combine the values of x (in this case it's 6x and the -2x)
so you can either add 2x to both sides or you can subtract 6x on both sides, in this case ill just add 2x to both sides.
Then you subtract 3 from both sides to get 8x<4
after you get that, you want to divide both sides by 8, and you generally want to do that step last, it makes it easier, and you get x<1/2 or 0.5
just a reminder that with working with inequalities, you want to remember to flip the direction the inequality is whenever you divide by a negative number
Answer:
3
Step-by-step explanation:
Answer:
-11, f(-5) 1
Step-by-step explanation:
Answer:
![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)
Step-by-step explanation:
A uniform distribution, "sometimes also known as a rectangular distribution, is a distribution that has constant probability".
We need to take in count that our random variable just take values between 0 and 1 since is uniform distribution (0,1). The maximum of the finite set of elements in (0,1) needs to be present in (0,1).
If we select a value
we want this:

And we can express this like that:
for each possible i
We assume that the random variable
are independent and
from the definition of an uniform random variable between 0 and 1. So we can find the cumulative distribution like this:

And then cumulative distribution would be expressed like this:



For each value
we can find the dendity function like this:

So then we have the pdf defined, and given by:
and 0 for other case
And now we can find the expected value for the random variable X like this:

![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)