Simplifying
3a + 2b + c = 26
Solving
3a + 2b + c = 26
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '-2b' to each side of the equation.
3a + 2b + -2b + c = 26 + -2b
Combine like terms: 2b + -2b = 0
3a + 0 + c = 26 + -2b
3a + c = 26 + -2b
Add '-1c' to each side of the equation.
3a + c + -1c = 26 + -2b + -1c
Combine like terms: c + -1c = 0
3a + 0 = 26 + -2b + -1c
3a = 26 + -2b + -1c
Divide each side by '3'.
a = 8.666666667 + -0.6666666667b + -0.3333333333c
Simplifying
a = 8.666666667 + -0.6666666667b + -0.3333333333c
A:
2t
t is the number of toys
b:
(p+12)/16
p is the price
Answer:
<h2>
y = -5</h2>
Step-by-step explanation:
y = 3x − 26
2x − y = 19
2x - (3x - 26) = 19
2x - 3x + 26 = 19
- x = - 7
x = 7
y = 3•7 -26 = 21 - 26 = - 5
Answer:
The percentage of samples of 4 fish will have sample means between 3.0 and 4.0 pounds is 66.87%
Step-by-step explanation:
For a normal random variable with mean Mu = 3.2 and standard deviation sd = 0.8 there is a distribution of the sample mean (MX) for samples of size 4, given by:
Z = (MX - Mu) / sqrt (sd ^ 2 / n) = (MX - 3.2) / sqrt (0.64 / 4) = (MX - 3.2) / 0.4
For a sample mean of 3.0, Z = (3 - 3.2) / 0.4 = -0.5
For a sample mean of 3.0, Z = (4 - 3.2) / 0.4 = 2.0
P (3.2 <MX <4) = P (-0.5 < Z <2.0) = 0.6687.
The percentage of samples of 4 fish will have sample means between 3.0 and 4.0 pounds is 66.87%