Answer:
do you still need the answer?
Step-by-step explanation:
I got 5 for the first one and 4 for the second one
Answer:
(a) The unit of 70.5 is lbm/ft^3 and the unit of 8.27×10^-7 is in^2/lbf
(b) density = 0.1206g/cm^3
(c) rho = 0.1206exp(8.27×10^-7P)
Step-by-step explanation:
(a) The unit of 70.5 is the same as the unit of rho which is lbm/ft^3. The unit of 8.27×10^-7 is the inverse of the unit of P (lbf/in^2) because exp is found of a constant. Therefore, the unit of 8.27×10^-7 is in^2/lbf
(b) P = 9×10^6N/m^2
rho = 70.5exp(8.27×10^-7× 9×10^6) = 70.5exp7.443 = 70.5×1.71 = 120.6kg/m^3
rho = 120.6kg/m^3 × 1000g/1kg × 1m^3/10^6cm^3 = 0.1206g/cm^3
(c) Formula for rho (g/cm^3) as a function of P (N/m^2) is
rho = 0.1206exp(8.27×10^-7P) (the unit of 0.1206 is g/cm^3)
Answer:
$1.49
Step-by-step explanation:
after the sales tax the bill would be $11.48
so 13% of that would be $1.49
so she tipped 1 dollar and 49 cent
Answer:
Step-by-step explanation:
Since G(0) = g(0) = 20, the parabolic graphs of these functions share a y-intercept: (0, 20).
Completing the square puts these equations into vertex form, which simplifies comparisons of the graphs:
G(x) = 2x^2 - 12x + 20 becomes
2(x^2 - 6x + 9 - 9) + 20, or
2(x - 3)^2 - 18 + 20, or 2(x - 3)^2 + 2. Comparing this result to
a(x - h)^2 + k, we see that the vertex is located at (3, 2).
Going through the same process for g(x) 2x^2+12x+20, we get:
g(x) = 2(x + 3)^2 + 2, whose vertex is at (-3, 2).
Next time, please include ALL info pertaining to your question, including the set of possible answer choices. Thank you.