Step-by-step explanation:
If were estimating, 39 is pretty close to 40 and 40x6 is 240 pounds. if we are getting exact about it, then 234 pounds
Use the equation and type the ordered-pairs. y = log 3 x {(1/3, a0), (1, a1), (3, a2), (9, a3), (27, a4), (81, a5)
vagabundo [1.1K]
Answer:
Considering the given equation 
And the ordered pairs in the format 
I don't know if it is log of base 3 or 10, but I will assume it is 3.
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
For 


So the ordered pair will be 
Answer:
90
Step-by-step explanation:
bc i said so
Hello!
To find the equation of a line parallel to y = 3x - 3 and passing through the point (4, 15), we need to know that if two lines are parallel, then their slopes are equivalent.
This means that we create a new equation in slope-intercept form, which includes the original slope, which is equal to 3.
In slope-intercept form, we need a y-intercept. So, we would substitute the given ordered pair into the new equation with the same slope and solve.
Remember that slope-intercept form is: y = mx + b, where m is the slope and b is the y-intercept.
y = 3x + b (substitute the ordered pair (4, 15))
15 = 3(4) + b (simplify)
15 = 12 + b (subtract 12 from both sides)
3 = b
Therefore, the equation for the line parallel to the line y = 3x - 3, and passing through the point (4, 15) is y = 3x + 3.
Answer:
It lies between 5 and 6
Step-by-step explanation:
Two consecutive numbers are numbers that come after each other:
x , x + 1 are consecutive numbers.
3 \sqrt{3} = 3√3 = 5.19615242271
Therefore, from the above calculation, we can see that square root of 3 is a number that is between consecutive numbers 5 and 6