Answer: 234.4K
Explanation:
Given that,
Original volume of gas (V1) = 5.00 L
Original temperature of gas (T1) = 20.0°C
[Convert 20.0°C to Kelvin by adding 273
20.0°C + 273 = 293K]
New volume of gas (V2) = 4.0L
New temperature of gas (T2) = ?
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
5.00L/293K = 4.0L/T2
To get the value of T2, cross multiply
5.00L x T2 = 293K x 4.0L
5.00L•T2 = 1172L•K
Divide both sides by 5.00L
5.00L•T2/5.00L = 1172L•K/5.00L
T2 = 234.4K
Thus, the new temperature of the gas is 234.4 Kelvin
Answer:
H₂O (water)
Explanation:
The reaction given is the glucose combustion inside the cells. During the combustion, it will be formed carbonic gas, water and energy.
The oxygen molecule is split in their two atoms of O. The element which has 1 proton and 1 electron is the hydrogen (H). So, when hydrogen reacts with oxygen, they form water (H₂O).
This problem is providing the heating curve of ethanol showing relevant data such as the initial and final temperature, melting and boiling points, enthalpies of fusion and vaporization and specific heat of solid, liquid and gaseous ethanol, so that the overall heat is required and found to be 1.758 kJ according to:
<h3>Heating curves:</h3>
In chemistry, we widely use heating curves in order to figure out the required heat to take a substance from a temperature to another. This process may involve sensible heat and latent heat, when increasing or decreasing the temperature and changing the phase, respectively.
Thus, since ethanol starts off solid and end up being a vapor, we will find five types of heat, three of them related to the heating-up of ethanol, firstly solid, next liquid and then vapor, and the other two to its fusion and vaporization as shown below:

Hence, we begin by calculating each heat as follows, considering 1 g of ethanol is equivalent to 0.0217 mol:
![Q_1=0.0217mol*111.5\frac{J}{mol*\°C}[(-114.1\°C)-(-200\°C)] *\frac{1kJ}{1000J} =0.208kJ\\ \\ Q_2=0.0217mol*4.9\frac{kJ}{mol} =0.106kJ\\ \\ Q_3=0.0217mol*112.4\frac{J}{mol*\°C}[(78.4\°C)-(-114.1\°C)] *\frac{1kJ}{1000J} =0.470kJ\\ \\ Q_4=0.0217mol*38.6\frac{kJ}{mol} =0.838kJ\\ \\ Q_5=0.0217mol*87.5\frac{J}{mol*\°C}[(150\°C)-(78.4\°C)] *\frac{1kJ}{1000J} =0.136kJ](https://tex.z-dn.net/?f=Q_1%3D0.0217mol%2A111.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28-114.1%5C%C2%B0C%29-%28-200%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.208kJ%5C%5C%0A%5C%5C%0AQ_2%3D0.0217mol%2A4.9%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.106kJ%5C%5C%0A%5C%5C%0AQ_3%3D0.0217mol%2A112.4%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%2878.4%5C%C2%B0C%29-%28-114.1%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.470kJ%5C%5C%0A%5C%5C%0AQ_4%3D0.0217mol%2A38.6%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.838kJ%5C%5C%0A%5C%5C%0AQ_5%3D0.0217mol%2A87.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28150%5C%C2%B0C%29-%2878.4%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.136kJ)
Finally, we add them up to get the result:

Learn more about heating curves: brainly.com/question/10481356