The son of a weaver, Dalton's major contribution to the field of chemistry is his atomic theory proposed in 1803.
Answer:
It is pseudoscience because there are at least 118 known elements in nature.
Explanation:
Alchemy is an ancient branch of natural philosophy (not used much anymore).
I also just took the test and it's correct.
Answer:
16.9g of H₂O can be formed
Explanation:
Based on the chemical reaction, 2 moles of H₂ react per mole of O₂. To anser this question we must find limiting reactant converting the mass and volume of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
8.76g * (1mol / 2.016g) = 4.345 moles
<em>Moles O₂:</em>
PV = nRT
PV/RT = n
P = 1atm at STP
V = 10.5L
R = 0.082atmL/molK
T = 273.15K at STP
n = 1atm*10.5L / 0.082atmL/molK*273.15K
n = 0.469 moles of oxygen
For a complete reaction of 4.345 moles moles of hydrogen are required:
4.345 moles H2 * (1mol O2 / 2mol H2) = 2.173 moles of O2 are required. As there are just 0.469 moles, Oxygen is limiting reactant
Now, 1 mole of O2 produce 2 moles of H2O. 0.469 moles will produce:
0.469 moles O₂ * (2 moles H₂O / 1mol O₂) = 0.938 moles H₂O.
The mass is -Molar mas H₂O = 18.01g/mol-:
0.938 moles * (18.01g/mol) =
<h3>16.9g of H₂O can be formed</h3>
Answer:
Buffer 1.
Explanation:
Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.
.
gains one hydrogen ion to produce the ammonium ion
. In other words,
is the conjugate acid of the weak base
.
Both buffer 1 and 2 include
- the weak base ammonia
, and - the conjugate acid of the weak base
.
The ammonia
in the solution will react with hydrogen ions as they are added to the solution:
.
There are more
in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of
in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.
Answer:
4960000000 pm
Explanation:
4.96*1000000000= 4960000000