<h3>
Answer: c. 8(y-6) = (x-2)^2</h3>
Explanation:
The directrix is horizontal, so the axis of symmetry is vertical. We'll have an x^2 term. The vertical distance from y = 4 to y = 8 is 4 units. Cut this in half to get 2, which is the focal distance p = 2.
The point (2,4) is directly below (2,8), and the point is on the directrix. The midpoint between (2,4) and (2,8) is (2,6). This is the vertex.
(h,k) = (2,6)
4p(y-k) = (x-h)^2
4*2(y-6) = (x-2)^2
8(y-6) = (x-2)^2
Answer:
x^2 + y^2 + 16x + 6y + 9 = 0
Step-by-step explanation:
Using the formula for equation of a circle
(x - a)^2 + (y + b)^2 = r^2
(a, b) - the center
r - radius of the circle
Inserting the values given in the question
(-8,3) and r = 8
a - -8
b - 3
r - 8
[ x -(-8)]^2 + (y+3)^2 = 8^2
(x + 8)^2 + (y + 3)^2 = 8^2
Solving the brackets
( x + 8)(x + 8) + (y +3)(y+3) = 64
x^2 + 16x + 64 + y^2 + 6y + 9 = 64
Rearranging algebrally,.
x^2 + y^2 + 16x + 6y + 9+64 - 64 = 0
Bringing in 64, thereby changing the + sign to -
Therefore, the equation of the circle =
x^2 + y^2 + 16x + 6y + 9 = 0
Answers: (y = 2) and (x = 1)
Steps:
Answer:
2x + 8x
10x
Step-by-step explanation:
Open the brackets and multiply x inside.
Answer:
The answer is 3
Step-by-step explanation:
The answer is 3 because x= 15/5 = 3