The volume formula is V= l x L x H, l=width, L=Length, H= Depth, so
2x3 _ 9x2 + 7x + 6 = l x L x (2x + 1), because H=(2x + 1), so
l x L= (2x3 _ 9x2 + 7x + 6 )/ (2x + 1) = (2x3 _ 9x2 + 7x + 6 ) X [1/(2x + 1)]
case1: l= (2x3 _ 9x2 + 7x + 6 ) or L= 1/(2x + 1), case2: L= (2x3 _ 9x2 + 7x + 6 ) or l= 1/(2x + 1)
the why question:
perhaps there is similarity of value between volume and l, or volume and L
<h3>
Answer: Choice D. 4x^2 + 20x + 25</h3>
===============================================
Explanation:
Perfect square trinomials are in the form (a+b)^2 = a^2+2ab+b^2
So the first and last terms must be perfect squares. The middle term is twice that of the square roots of each first and last term.
Choice D fits the description because 4x^2 = (2x)^2 is the first term, so a = 2x and 25 = 5^2 is the last term meaning b = 5. Note how 2ab = 2*2x*5 = 20x is the middle term.
-------------
(a+b)^2 = a^2+2ab+b^2
(2x+5)^2 = (2x)^2+2*2x*5+5^2
(2x+5)^2 = 4x^2 + 20x + 25
Answer:
6.25
Step-by-step explanation:
5 is almost the half of it and 4 is the other/ sorry I'm not very good at explaining
Answer:
a) Water height, H(g) = 8g^2 + 3g -4 - [9g^2 -2g -5] = 8g^2 + 3g -4 -9g^2 + 2g +5 = -g^2 +5g +1
b) g = 1
H(g) = -(1)^2 + 5(1) + 1 = -1 + 5 + 1 = 5
g=2
H(g) = -(2)^2 + 5(2) + 1 = -4 + 10 + 1 = 7
g=3
H(g) = -(3)^2 + 5(3) + 1 = -9 +15 +1 = 5
c) Greatest height
Find the vertex of the parabole
The vertex is at the mid point between the two roots.
To find the roots you can use the quadratic equation
The result is g = 5/2 + [√29]/2 and g = 5/2 - [√29]/2
The middle poin is 5/2 = 2.5
Now find H(2.5) = -(2.5)^2 + 5(2.5) + 1 = 7.5 ≈ 7.3
hope this helps