
When 0 is in the numerator, then the whole fraction becomes equal to 0.
However if 0 is in the denominator, then it is undefined.
Answer:
see explanation
Step-by-step explanation:
The common difference d of an arithmetic sequence is
d =
-
=
- 
Substitute in values and solve for k, that is
5k - 1 - 2k = 6k + 2 - (5k - 1)
3k - 1 = 6k + 2 - 5k + 1
3k - 1 = k + 3 ( subtract k from both sides )
2k - 1 = 3 ( add 1 to both sides )
2k = 4 ⇒ k = 2
--------------------------------------------------------
The n th term of an arithmetic sequence is
=
+ (n - 1)d
= 2k = 2 × 2 = 4 and
d = 5k - 1 - 2k = 3k - 1 = (3 × 2) - 1 = 5
Hence
= 4 + (7 × 5) = 4 + 35 = 39
Answer:
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright)
i.e after the first year ;
there 1344 members in the first age class
84 members for the second age class; and
28 members for the third age class
Step-by-step explanation:
We can deduce that the age distribution vector x represents the number of population members for each age class; Given that in each class of age there are 112 members present.
The current age distribution vector is as follows:
![x = \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right] \left[\begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 0 \ \leq age \leq 2 }\\{0 \ \leq age \leq 3}\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%200%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright%5D)
Also , the age transition matrix is as follows:
![L = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D)
After 1 year ; the age distribution vector will be :
![x_2 =Lx_1 = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right] \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3DLx_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%203%7D%5Cend%7Barray%7D%5Cright)
Just subtract the following number from the preceding one.
48- 3= 45
3- 45= -42.