Answer:
y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
dy/dx = v + x*dv/dx
- Combine the two equations:
v + x*dv/dx = 0.5*(1/v) + 2.5*v
x*dv/dx = 0.5*(1/v) + 1.5*v
x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
(2v.dv / (v^2 + 1) = dx / x
- Integrate both sides:
Ln (v^2 + 1) = Ln(x) + C
v^2 + 1 = Cx
v = sqrt(Cx - 1)
- Back substitution:
(y/x) = sqrt(Cx - 1)
y = x*sqrt(Cx - 1)
The points which represents the vertices of the given equation are; (15, −2) and (−1, −2).
<h3>Which points among the answer choices represents the vertices of the ellipse whose equation is given?</h3>
The complete question gives the equation of the ellipse as; (x-7)²/64+(y+2)²/9=1.
Since, It follows from convention that general equation of ellipse with centre as (h, k) takes the form;
(x-h)²/a² +(y-k)²/b² = 1.
Consequently, it follows from observation that the value of a and b in the given equation in the task content is; √64 = 8 and √9 = 3 respectively.
Since, 8 > 3, The vertices of the ellipse are given by; (h±a, k).
The vertices in this scenario are therefore;
(7+8, -2) and (7-8, -2).
= (15, -2) and (-1, -2).
Read more on vertices of an ellipse;
brainly.com/question/9525569
#SPJ1