The expected value per game is -0.26. Over 1000 games, you can expect to lose $263.16.
To find the expected value, we multiply the probability of winning by the amount of winnings, the probability of losing by the amount of loss, and adding those together.
We have a 1/38 chance of winning; 1/38(175) = $4.61. We also have a 37/38 chance of losing; 37/38(5) = $4.87.
$4.61-$4.87 = -$0.26 (rounded)
To five decimal places, our answer is -0.26136; multiplied by 1000 games, this is $261.36 lost.
Answer:
−14x^3+29x^2−27x−18
Step-by-step explanation:
Answer:
D - 353.7
Step-by-step explanation:
Edge 2020
Answer:
56
Step-by-step explanation:
combinations
C(8,3)