Answer:
y=3x+2
Step-by-step explanation:
Answer:
The cosine function to model the height of a water particle above and below the mean water line is h = 2·cos((π/30)·t)
Step-by-step explanation:
The cosine function equation is given as follows h = d + a·cos(b(x - c))
Where:
= Amplitude
2·π/b = The period
c = The phase shift
d = The vertical shift
h = Height of the function
x = The time duration of motion of the wave, t
The given data are;
The amplitude
= 2 feet
Time for the wave to pass the dock
The number of times the wave passes a point in each cycle = 2 times
Therefore;
The time for each complete cycle = 2 × 30 seconds = 60 seconds
The time for each complete cycle = Period = 2·π/b = 60
b = π/30 =
Taking the phase shift as zero, (moving wave) and the vertical shift as zero (movement about the mean water line), we have
h = 0 + 2·cos(π/30(t - 0)) = 2·cos((π/30)·t)
The cosine function is h = 2·cos((π/30)·t).
Answer:
5/4,2.5,3.7,4.75,5.5,6,28,29
Step-by-step explanation:
Answer:
185/27
Step-by-step explanation:
To get the polynomial that is exactly divisible by g(x)=3x+2, we have to divide f(x)=3x
4
−2x
3
+3x
2
−2x+3 by g(x) and get the remainder as shown in the above image.
Hence,
27
185
should be subtracted from 3x
4
−2x
3
+3x
2
−2x+3 so that the resulting polynomial is exactly divisible by 3x+2.