Answer:
-4.65
Step-by-step explanation:
5.8-3.5=2.3
2.3 divided by 2=1.15
3.5+1.15=4.65
Answer: -4.65
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by
2
3
2
3
gives the next term. In other words,
a
n
=
a
1
⋅
r
n
−
1
a
n
=
a
1
⋅
r
n
-
1
.
Geometric Sequence:
r
=
2
3
r
=
2
3
This is the form of a geometric sequence.
a
n
=
a
1
r
n
−
1
a
n
=
a
1
r
n
-
1
Substitute in the values of
a
1
=
1
2
a
1
=
1
2
and
r
=
2
3
r
=
2
3
.
a
n
=
(
1
2
)
⋅
(
2
3
)
n
−
1
a
n
=
(
1
2
)
⋅
(
2
3
)
n
-
1
Apply the product rule to
2
3
2
3
.
a
n
=
1
2
⋅
2
n
−
1
3
n
−
1
a
n
=
1
2
⋅
2
n
-
1
3
n
-
1
Multiply
1
2
1
2
and
2
n
−
1
3
n
−
1
2
n
-
1
3
n
-
1
.
a
n
=
2
n
−
1
2
⋅
3
n
−
1
a
n
=
2
n
-
1
2
⋅
3
n
-
1
Cancel the common factor of
2
n
−
1
2
n
-
1
and
2
2
.
Tap for more steps...
a
n
=
2
n
−
2
3
n
−
1
a
n
=
2
n
-
2
3
n
-
1
Substitute in the value of
n
n
to find the
n
n
th term.
a
5
=
2
(
5
)
−
2
3
(
5
)
−
1
a
5
=
2
(
5
)
-
2
3
(
5
)
-
1
Simplify the numerator.
Tap for more steps...
a
5
=
8
3
(
5
)
−
1
a
5
=
8
3
(
5
)
-
1
Simplify the denominator.
Tap for more steps...
a
5
=
8
81
a
5
=
8
81
Answer:
22650
Step-by-step explanation:
Answer:
x = - 5 , x = 
Step-by-step explanation:
the values of x that make f(x) zero are the zeros
to find the zeros let f(x) = 0 , that is
3x² + 13x - 10 = 0
consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 3 × - 10 = - 30 and sum = + 13
the factors are + 15 and - 2
use these factors to split the x- term
3x² + 15x - 2x - 10 = 0 ( factor the first/second and third/fourth terms )
3x(x + 5) - 2(x + 5) = 0 ← factor out (x + 5) from each term
(x + 5)(3x - 2) = 0
equate each factor to zero and solve for x
x + 5 = 0 ⇒ x = - 5
3x - 2 = 0 ⇒ 3x = 2 ⇒ x = 
A rotation is an isometric transformation that turns every point of a figure through a specified angle and direction about a fixed point.
To describe a rotation, you need three things:
Direction (clockwise CW or counterclockwise CCW)
Angle in degrees
Center point of rotation (turn about what point?)
The most common rotations are 180° or 90° turns, and occasionally, 270° turns, about the origin, and affect each point of a figure as follows:
Mark me as brainliest! :D Hope it helps