Zero, distributive, commutive. thats all I can think of.
Answer:
x<4
Move all terms not containing x to the right side of the inequality.
Answer:
This is a geometric sequence because any term divided by the previous term is a constant called the common ratio. r=36/18=18/9=2 A geometric sequence is expressed as
\begin{gathered}a_n=ar^{n-1},\text{ where a=initial term, r=common ratio, n=term number}\\ \\ a_n=9(2^{n-1})\\ \\ a_6=9(2^5)\\ \\ a_6=288\end{gathered}an=arn−1, where a=initial term, r=common ratio, n=term numberan=9(2n−1)a6=9(25)a6=288
Answer:
-2, 3, -0.5 + 0.866i, -0.5 - 0.866i.
Step-by-step explanation:
As the last term is -6 , +/- 2 , +/- 3 are possible zeroes.
Try 2:-
(2)^4 - 6(2)^2 - 7(2) - 6 = -28 so 2 is not a zero.
3:-
(3)^4 - 6(3)^2 - 7(3) - 6 = 0 so 3 is a zero.
(-2)^4 - 6(-2)^2 - 7(-2) - 6 = 0 so -2 is also a zero.
Divide the function by (x +2)(x - 3), that is x^2 - x - 6
gives x^2 + x + 1
x^2 + x + 1
So we have x^2 + x + 1 = 0
x = [-1 +/- √(1^1 - 4*1*1)] / 2
= -1 + √(-3) / 2 , - 1 - √(-3) / 2.
= -0.5 + 0.866i, -0.5 - 0.866i
Answer:
C
Step-by-step explanation:
5+2y+3z=5+3z+2yA
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
5+3z+2yA=5+2y+3z
Resta 5 en los dos lados.
3z+2yA=5+2y+3z−5
Resta 5 de 5 para obtener 0.
3z+2yA=2y+3z
Resta 3z en los dos lados.
2yA=2y+3z−3z
Combina 3z y −3z para obtener 0.
2yA=2y
Anula 2 en ambos lados.
yA=y
Divide los dos lados por y.
y
yA
=
y
y
Al dividir por y, se deshace la multiplicación por y.
A=
y
y
Divide y por y.
A=1