Y =ax² + bx +c
1) Point (0,7)
7 = a*0² +b*0 +c
c = 7
y=ax² + bx + 7
2) Point (1,4)
4=a*1² + b*1 + 7, ----> 4 = a +b + 7, ------>
a+b= - 3
3) Point (2, 5)
5=a*2² + b*2 + 7, ----> 5=4a+2b +7,---> -2=4a+2b, ---->
-1=2a + b
4)
a+b= - 3, ----> b= -3 - a (substitute in the second equation)
2a+b= -1
2a - 3 - a = -1, ----> a - 3 = -1,
a =2
5) a+b= - 3
2 + b = -3
b = -5
y=2x² - 5x + 7
Answer:
B is the right answer,...B) (6, 1)
Step-by-step explanation:
no steps just a pencil,paper,caculator,white board, and dry erase marker to help u solve this
To find T, you add 25 to both sides, isolating the varible. This gives you T=-19
Hope this helped!
Answer:
16 1/12
Step-by-step explanation:
The LCD of 6 1/3 + 5 1/2 + 4 1/4 is 12; 12 is evenly divisible by 3, 2 and 4.
We can rewrite this expression as:
6 + 5 + 4 + 1/3 + 1/2 + 1/4, or
15 +4/12 + 6/12 + 3/12, or
15 + 13/12, or
16 1/12
Exercise 1:
exponential decay:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 600
We look for b:
(480/600) * (100) = 80%
b = 0.8
Substituting:
y = 600 * (0.8) ^ ((1/3) * t)
We check for t = 6
y = 600 * (0.8) ^ ((1/3) * 6)
y = 384
Answer:
exponential decay:
y = 600 * (0.8) ^ ((1/3) * t)
Exercise 2:
linear:
The function is given by:
y = ax + b
Where,
a = -60 / 2 = -30
b = 400
Substituting we have:
y = -30 * x + 400
We check for x = 4
y = -30 * 4 + 400
y = 280
Answer:
linear:
y = -30 * x + 400
Exercise 3:
exponential growth:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 512
We look for b:
(768/512) * (100) = 150%
b = 1.5
Substituting:
y = 512 * (1.5) ^ ((1/2) * t)
We check for t = 4
y = 512 * (1.5) ^ ((1/2) * 4)
y = 1152
Answer:
exponential growth:
y = 512 * (1.5) ^ ((1/2) * t)