Sound waves are longitudal waves meaning they go back and forth
the rate of work done or doing work is usually measured by the power of a machine .
Friction? For example, like when a car's tires skid on rough concrete.
Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz
The velocity of the particle is given by the derivative of the position vector:

(a) The particle is moving in the <em>x</em>-direction when the <em>y</em>-component of velocity is zero:

But we want <em>t</em> > 0, so this never happens, unless 2<em>c</em> = <em>d</em> is given, in which case the <em>y</em>-component is always zero.
(b) Similarly, the particle moves in the <em>y</em>-direction when the <em>x</em>-component vanishes:

We drop the zero solution, and we're left with

In the case of 2<em>c</em> = d, this times reduces to <em>t</em> = <em>c</em>/(6<em>c</em>) = 1/6.