Answer:
The mean and standard deviation for the z-scores in this distribution are 0 and 1 respectively.
Step-by-step explanation:
Let the random variable <em>X</em> follow a Normal distribution with mean <em>μ </em>and standard deviation <em>σ.</em>
The <em>z</em>-scores are standardized form of the raw scores <em>X</em>. It is computed by subtracting the mean (<em>μ</em>) from the raw score <em>x</em> and dividing the result by the standard deviation (<em>σ</em>).

These <em>z</em>-scores also follow a normal distribution.
The mean is:
![E(z)=E[\frac{x-\mu}{\sigma} ]=\frac{1}{\sigma}\times [E(x)-\mu] =\frac{1}{\sigma}\times [\mu-\mu]=0](https://tex.z-dn.net/?f=E%28z%29%3DE%5B%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%20%5D%3D%5Cfrac%7B1%7D%7B%5Csigma%7D%5Ctimes%20%5BE%28x%29-%5Cmu%5D%20%3D%5Cfrac%7B1%7D%7B%5Csigma%7D%5Ctimes%20%5B%5Cmu-%5Cmu%5D%3D0)
The standard deviation is:
![Var(z)=Var[\frac{x-\mu}{\sigma} ]=\frac{1}{\sigma^{2}}\times [Var(x)-Var(\mu)] =\frac{\sigma^{2}-0}{\sigma^{2}}=1\\SD(z)=\sqrt{Var(z)}=1](https://tex.z-dn.net/?f=Var%28z%29%3DVar%5B%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%20%5D%3D%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Ctimes%20%5BVar%28x%29-Var%28%5Cmu%29%5D%20%3D%5Cfrac%7B%5Csigma%5E%7B2%7D-0%7D%7B%5Csigma%5E%7B2%7D%7D%3D1%5C%5CSD%28z%29%3D%5Csqrt%7BVar%28z%29%7D%3D1)
Thus, the mean and standard deviation for the z-scores in this distribution are 0 and 1 respectively.