It's A and C, I've taken a test that has this question and it was correct when I answered this, so A and C is your answer.
Step-by-step explanation:
Take the first derivative


Set the derivative equal to 0.




or

For any number less than -1, the derivative function will have a Positve number thus a Positve slope for f(x).
For any number, between -1 and 1, the derivative slope will have a negative , thus a negative slope.
Since we are going to Positve to negative slope, we have a local max at x=-1
Plug in -1 for x into the original function

So the local max is 2 and occurs at x=-1,
For any number greater than 1, we have a Positve number for the derivative function we have a Positve slope.
Since we are going to decreasing to increasing, we have minimum at x=1,
Plug in 1 for x into original function


So the local min occurs at -2, at x=1
Answer: The minimum reliability for the second stage be 0.979.
Step-by-step explanation:
Since we have given that
Probability for the overall rocket reliable for a successful mission = 97%
Probability for the first stage = 99%
We need to find the minimum reliability for the second stage :
So, it becomes:
P(overall reliability) = P(first stage ) × P(second stage)

Hence, the minimum reliability for the second stage be 0.979.