17/3 most likely it depends on what was needed
Answer:
baby, I don't know
Step-by-step explanation:
28 hope this helps if it does thank me later
n+5=9 is the answer for this
is proved
<h3><u>
Solution:</u></h3>
Given that,
------- (1)
First we will simplify the LHS and then compare it with RHS
------ (2)
![\text {We know that } \tan x=\frac{\sin x}{\cos x}](https://tex.z-dn.net/?f=%5Ctext%20%7BWe%20know%20that%20%7D%20%5Ctan%20x%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D)
Substitute this in eqn (2)
![=\frac{1+\frac{\sin x}{\cos x}}{\sin x+\cos x}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%2B%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%7D%7B%5Csin%20x%2B%5Ccos%20x%7D)
On simplification we get,
![=\frac{\frac{\sin x+\cos x}{\cos x}}{\sin x+\cos x}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Cfrac%7B%5Csin%20x%2B%5Ccos%20x%7D%7B%5Ccos%20x%7D%7D%7B%5Csin%20x%2B%5Ccos%20x%7D)
![=\frac{\sin x+\cos x}{\cos x} \times \frac{1}{\sin x+\cos x}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csin%20x%2B%5Ccos%20x%7D%7B%5Ccos%20x%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%5Csin%20x%2B%5Ccos%20x%7D)
Cancelling the common terms (sinx + cosx)
![=\frac{1}{c o s x}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7Bc%20o%20s%20x%7D)
We know secant is inverse of cosine
![=\sec x=R . H . S](https://tex.z-dn.net/?f=%3D%5Csec%20x%3DR%20.%20H%20.%20S)
Thus L.H.S = R.H.S
Hence proved