First, let's state the chemical reaction:

We can find the number of moles of Cl2 required to produce 0.0923 moles of AlCl3, doing a rule of three: 3 moles of Cl2 reacted produces 2 moles of AlCl3:

The calculation would be:

And the final step is to convert this number of moles to grams. Remember that the molar mass can be calculated using the periodic table, so the molar mass of Cl2 is 70.8 g/mol, and the conversion is:

The answer is that we need 9.770 grams of Cl2 to produce 0.0923 moles of AlCl3.
Answer:
Carbon has a valency of+4 and chlorine has a valency equal to −1.Compound is Carbon tetrachloride CCl4.
Answer:
The correct answer is
[CH4][H2O]/[CO][H2]3
Option 3 is correct
Explanation:
Step 1: Data given
For the equation aA + bB ⇆ cC + dD
The equilibrium constant is [C]^c * [D]^d / [A]^a*[B]^b
Step 2: Calculate the equilibrium constant Kc
CO+3H2⇌CH4+H2O
Kc = [H2O][CH4] / [CO][H2]³
The correct answer is
[CH4][H2O]/[CO][H2]3
Option 3 is correct
What mass of the following chemicals is needed to make the solutions indicated?
Answer:
271.6g
Explanation:
The mass of the chemicals need to make the needed solution can be derived by obtaining the number of moles first.
Given parameters:
Volume of solution = 1L
Molarity of HgCl₂ = 1M
number of moles of HgCl₂ = molarity of solution x volume
= 1 x 1
= 1 mole
From;
Mass of a substance = number of moles x molar mass;
we can find mass;
Molar mass of HgCl₂ = 200.6 + 2(35.5) = 271.6g/mol
Mass of the substance = 1 x 271.6 = 271.6g
The theory of infinite universe and the theory of vacuum as a substance. First was disproved by the discovery of the big bang and the later by some experiments with light which have shown that vacuum is not a substance but empty space.