Answer:
6.31g/mol
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Mole (n) = mass (m)/molar mass (Mm)
* Mm = m/n
Also, density (p) = mass (m) ÷ volume (V)
PV = nRT
Since n = M/Mm
PV = M/Mm. RT
PV × Mm = m × RT
Divide both sides by V
P × Mm = m/V × RT
Since p = m/V
P × Mm = p × RT
Mm = p × RT/P
Mm = 0.249 × 0.0821 × 293/0.95
Mm = 5.989 ÷ 0.95
Mm = 6.31g/mol
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
Answer:
In order to rinse the system of exhaled CO2 and meet the inspiratory flow rate requirements of infants placed on B-CPAP, the flow rate of humidified gas should be set at:
A. 16 to 20 L/minute
B. 6 to10 L/minute
C. at least 15 L/minute
D. 11 to 15 L/minute
B. 6 to10 L/minute
Explanation:
Bubble CPAP is a non-invasive, external ventilation technique used for newborn babies with infant respiratory distress syndrome (IRDS). Continuous positive airway pressure (CPAP) is given to a spontaneously breathing newborn baby to preserve lung volumes during expiration
Answer:
1.99 M
Explanation:
The molar mass of sodium thiosulfate (solute) is 158.11 g/mol. The moles corresponding to 110 grams are:
110 g × (1 mol/158.11 g) = 0.696 mol
The volume of solution is 350 mL = 0.350 L.
The molarity of sodium thiosulfate is:
M = moles of solute / liters of solution
M = 0.696 mol / 0.350 L
M = 1.99 M