Height of another tree that cast a shadow which is 20ft long is 5 feet approximately
<h3><u>Solution:</u></h3>
Given that tree with a height of 4 ft casts a shadow 15ft long on the ground
Another tree that cast a shadow which is 20ft long
<em><u>To find: height of another tree</u></em>
We can solve this by setting up a ratio comparing the height of the tree to the height of the another tree and shadow of the tree to the shadow of the another tree

Let us assume,
Height of tree = 
Length of shadow of tree = 
Height of another tree = 
Length of shadow of another tree = 
Set up a proportion comparing the height of each object to the length of the shadow,


Substituting the values we get,

So the height of another tree is 5 feet approximately
Answer: 977000
Step-by-step explanation:
Answer:
You'll have to give more information about the question or about what you need solved.
Step-by-step explanation:
Answer:
(x + 3)² + (y - 7)² = 81
Step-by-step explanation:
the equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k ) are the coordinates of the centre and r the radius
here (h, k ) = (- 3, 7 ) and r = 9 , then
(x - (- 3) )² + (y - 7)² = 9² , that is
(x + 3)² + (y - 7)² = 81
Answer:
Any points in the shaded region including (2,-2) and (-3,-8)
Step-by-step explanation:
Convert the line into slope intercept form and graph it.
2x-y > 1 becomes -y>1-2x. Divide both sides by -1 and you get y<2x-1. Graph it with the shaded area on the right and a dashed line.
Any point which falls within the shaded red of the graph is a solution. No points on the line since it is not equal to (its dashed) are solutions. Check the location of your points to verify that they fall within this area.
(-3, -8) ---Yes
(-1, -3) ---No
(0, 5) --- No
(1, 6) --- No
(2, -2) ---Yes