Answer:
V = 9.33 m/s
Explanation:
Given that,
Mass of the batsman, 
Mass of the boat,
Initial speed of the boat, v = 11 m/s
Let V is the velocity of the boat after Batman lands in it. The net momentum of the system remains constant. Using the conservation of linear momentum to find it as :


V = 9.33 m/s
So, the velocity of the boat after Batman lands in it 9.33 m/s. Hence, this is the required solution.
Answer:
Minimum diameter of the camera lens is 22.4 cm
The focal length of the camera's lens is 300cm
Explanation:
y = Resolve distance = 0.3 m
h = Height of satellite = 100 km
λ = Wavelength = 550 nm
Angular resolution

From Rayleigh criteria

Minimum diameter of the camera lens is 22.4 cm
Relation between resolvable feature, focal length and angular resolution

The focal length of the camera's lens is 300cm
Answer:

Explanation:
Given data:
mass of block is 
radius of block = 0.061 m
moment of inertia is 
D is distance covered by block = 0.65 m
speed of block is 1.705 m/s
From conservation of momentum we have

![0.84 \times 9.81 \times 0.65 = \frac{1}{2}\times 0.84 \times 1.705^2 +\frac{1}{2} \times 6.2 \times 10^{-3} [\frac{1.705}{0.061}]^2 + E_l](https://tex.z-dn.net/?f=0.84%20%5Ctimes%209.81%20%5Ctimes%200.65%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%200.84%20%5Ctimes%201.705%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%206.2%20%5Ctimes%2010%5E%7B-3%7D%20%5B%5Cfrac%7B1.705%7D%7B0.061%7D%5D%5E2%20%2B%20E_l)
solving for energy loss

Answer:We can solve this using the Law of Conservation of Momentum. If both marbles are in our system, the initial momentum should equal the final momentum.
The initial momentum can be solved for as so:
* + =
(0.06)(0.7) + (0.03)(0) = 0.042 [kg * m/s]
So if the system has an initial momentum of 0.042, it should have the same final momentum.
(0.06)(-0.2) + (0.03)() = 0.042
(0.03)() = 0.54
() = 18 [m/s]
Explanation: