V = d/t = 8.8 miles/[80/60] hours = 6.6 miles/hour
t = d/v = d/6.6
Answer: d/6.6, where d is the number of miles to run.
Answer:
t≈8.0927
Step-by-step explanation:
h(t) = -16t^2 + 128t +12
We want to find when h(t) is zero ( or when it hits the ground)
0 = -16t^2 + 128t +12
Completing the square
Subtract 12 from each side
-12 = -16t^2 + 128t
Divide each side by -16
-12/-16 = -16/-16t^2 + 128/-16t
3/4 = t^2 -8t
Take the coefficient of t and divide it by 8
-8/2 = -4
Then square it
(-4) ^2 = 16
Add 16 to each side
16+3/4 = t^2 -8t+16
64/4 + 3/4= (t-4)^2
67/4 = (t-4)^2
Take the square root of each side
±sqrt(67/4) =sqrt( (t-4)^2)
±1/2sqrt(67) = (t-4)
Add 4 to each side
4 ±1/2sqrt(67) = t
The approximate values for t are
t≈-0.092676
t≈8.0927
The first is before the rocket is launched so the only valid answer is the second one
Answer:
Kinda need more information on that xD
Answer:
230
Step-by-step explanation:
300 - 70 = 270 boom
I believe the second one, double check